
Understanding how to implement sparse matrix
operations efficiently

Simon Dobson

26 February 2025

Lots of modern software is built around linear algebra, for scientific com-
puting and increasingly for systems that use machine learning, AI, or real-
istic immersive graphics. The matrices and tensors involved are typically
dense, with the majority of elements being non-zero. This density makes
the data structures easy to store in memory (as blocks of numbers) and to
compute with using regular sequences of operations applied in bulk to the
data in patterns that can usually be determined (and therefore scheduled) at
compile-time. The basic operations of element-wise multiplication and row-
or column-wise summation are now typically performed on GPUs and their
variants (NPUs and TPUs) that exploit this regularity to obtain through par-
allelism a much higher performance than is possible on a traditional CPU..

There is however another family of matrix/tensor calculations that do
not share these attractive features. Sparse matrices have the majority of el-
ements being zero. This changes everything, since many (or even most) addi-
tion and multiplication operations will involve a zero operand, so performing
the computations naïvely will waste time, while storing all the elements will
waste space.

A typical example of sparse matrices comes from network science, where
the connections between nodes can be represented by an adjacency matrix.
Since most nodes are not connected to each other by edges, adjacency ma-
trices are sparse. If one had a million-node network where each node has
ten neighbours, then each row of the matrix would have only ten non-zero
values.

Sparse matrices arise in lots of applications – including, increasingly, in
AI, where new models such as DeepSeek generate sparse networks as part of
their training. There seems therefore to be an increasing need to understand
how sparse matrices can be efficiently represented and processed.

Efficiently programming with sparse matrices involves addressing several

1



problems simultaneously. There are several different storage formats, each
better suited to some operations than to others. The basic arithmetic opera-
tions need to be expressed against these storage options. The calculations are
irregular and are strongly dependent on the exact data values and patterns
of sparsity, which works against using compile-time scheduling. Some useful
programming techniques such as re-indexing to avoid data movement, affect
locality of reference. This leads to more complicated interactions between
core, cache, and memory, as well as offering fewer obvious opportunities for
parallelism.

In this work we are studying these issues and their trade-offs, with a
view to understanding whether and how we can accelerate sparse matrix
calculations. This talk will focus on the systems problems involved, the
approach we are using to explore them, and give examples of some of the
irregularities of storage and calculation and their implications for efficient
processing.

2


