
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

True-JIT – Learning and Prediction of Compilation
Sequences in a Centralized JIT Compiler

Anonymous Author(s)
Submission Id: 755

Abstract
In recent years we have observed the development of central-
ized Just-in-Time (JIT) compilers serving many compiler-less
Language Virtual Machine (LVM) clients at once. While cen-
tralized JIT compilation reduces CPU and memory overhead
due to global code caching and code reuse, it introduces ad-
ditional latency between LVM clients and the central JIT
compilation server. In this paper we investigate opportuni-
ties for hiding this latency. We explore how sequences of JIT
compilation requests can be learned by the centralized JIT
compiler and predicted. We train a long short-term memory
(LSTM) network with JIT compilation requests and, during
deployment, we use this to proactively compile and deliver
native code to the LVM clients in a true just-in-time fashion,
i.e. with minimal latency for the LVM clients. We have im-
plemented our novel scheme in a distributed WebAssembly
environment, and evaluated it against several benchmark
suites including real-world applications from various appli-
cation domains. We show that learning of JIT compilation
sequences is feasible, and predictive speculation is effective
in hiding JIT compilation latency. We demonstrate that cen-
tralized JIT compilation assisted by code caching, predictive
compilation and code delivery reduces JIT compilation la-
tency by, on average, 1-2 orders of magnitude for complex
and timing-critical workloads.

1 Introduction
JIT compilation promises to deliver application portabil-
ity [17] and improved runtime performance [33] through
dynamic code generation and optimization. Used widely
in the implementation of programming languages such as
JavaScript, Java, Kotlin and C#, JIT compilation has found
application from small embedded systems [29] to High-Perf-
ormance Computing (HPC) [34], web browsers [9] and mo-
bile devices [30]. A more recent trend includes the use of
JIT compiled languages and JIT compilers in Cloud settings
[24, 25].

However, it is well known that JIT compilation introduces
startup delays [16] and compilation overhead during run-
time [27]. Both of these factors are particularly undesirable
in Cloud environments, where high responsiveness [10, 39]
and cost of utilized compute and memory resources [15] are
major considerations. Redundant JIT is particularly expen-
sive for users who pay for resources as and when they use
them, e.g. in Function-as-a-Service (FaaS) settings.

Against this background, centralized JIT compilation ap-
proaches have emerged where a single JIT server produces
native code for multiple LVM clients [8, 25]. For example,
IBM’s JITServer [25] compiler for the Java Virtual Machine
(JVM) makes extensive use of global code caching, aiming
to avoid repeated compilation wherever possible. While this
improves data center resource utilization, network commu-
nication between the LVM clients and the centralized JIT
compiler introduces additional delay.

1.1 Key Ideas
In this paper we explore two key ideas to minimize JIT com-
pilation latency in such a centralized JIT compilation scheme.
First, we speculatively compile code in the JIT compiler and
warm up its centralized code cache. Second, we speculatively
deliver code to client LVMs over the network. The aim of
combined speculative compilation and code delivery is to
ensure that client LVMs never have to wait for code genera-
tion, but can continuously execute compiled code from their
local code caches.
Central to achieving our goals is the observation that

sequences of compilation requests issued to the central JIT
compilation service are not random, but follow the generally
well-behaved control flow structure of the target application.
Modelling these sequences as sentence structures we train an
LSTM network, which can then be used to predict the most
likely sequence of future compilation requests. We use this to
accomplish truly Just-in-Time (JIT) codemanagement, where
waiting times for JIT compiled code are largely eliminated.

We explore the novel concepts of this work in a disaggre-
gated WebAssembly JIT compiler developed from scratch.
We observe that as WebAssembly applications grow in com-
plexity, users are beginning to experience increased file sizes
and substantial increases in startup time due to compilation
latency [36]. However, our work is not limited to WebAssem-
bly, but could be adapted to other languages and JIT compiler
frameworks.

1.2 Contributions
In this paper we make following contributions:

1. We develop a scalable, centralized JIT compilation
infrastructure serving multiple WebAssembly client
LVMs,

2. we present a novel method for minimizing JIT compi-
lation latency based on speculative compilation and
delivery of code using an LSTM network, and

1

Benchmark #Runs Avg. JIT
Seq. Length

Similarity Score
Min Max Avg

gcc 218 4403 0.34 1.0 0.6
mcf 7 50 1.0 1.0 1.0
cactuBSSN 11 907 1.0 1.0 1.0
povray 10 519 0.67 1.0 0.78
lbm 27 29 0.93 1.0 0.97
xalancbmk 8 1756 0.77 0.92 0.84
x264 12 296 0.44 1.0 0.87
deepsjeng 12 101 0.77 0.93 0.87
leela 12 216 0.92 0.99 0.95
nab 13 96 0.99 1.0 1.0
exchange2 13 42 0.98 1.0 0.99
xz 51 153 0.25 1.0 0.92

Table 1. Similarity scores (1.0: identical; 0.0: nothing in com-
mon) for JIT compilation sequences for the SPEC CPU2017
benchmarks across the Alberta workloads: Each benchmark
is run with multiple workloads, for which we record the
sequences of JIT compiled functions. We then compare the
JIT compilation sequences for each benchmark and observe
high similarity despite variation of input data.

3. we systematically evaluate our LLVM based True-JIT
system against a baseline representing the concepts
developed in IBM’s OpenJ9 centralized, caching JIT-
Server.

1.3 Motivating Observations
Similarity of Application Execution. As we seek to pre-

dict the most likely next function(s) needed by an LVM client
we are interested in the similarity between runs of the same
application with different inputs. For this we compute pair-
wise Ratcliff/Obershelp similarity scores [11] for each the
SPEC CPU2017 benchmarks [14] using the Alberta work-
loads [7] as shown in Table 1. Using a JIT compiler which
compiles functions as they are encountered, we generate
the sequence of JIT compilation requests for each run of
a program. We then compute the similarity scores across
all compilation sequences for each benchmark. We observe
that different inputs lead to different, but highly similar JIT
compilation sequences with similarity scores in the range
of 25-100%, and typically above 80%. For many benchmarks
distinct inputs which lead to identical compilation sequences.
The GCC benchmark is of special interest as more than 200
distinct workloads are available. While its minimal similarity
score is just 34%, clusters of inputs result in highly similar
application behaviors, i.e. with just five clusters JIT compila-
tion sequences can be covered with intra-cluster similarities
above 80%. We exploit this similarity for prediction based on
prior learning.

Scope for hiding JIT compilation latency. Consider the
graph in Figure 1. For the SPEC CPU2017 x264 benchmark

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0

100
200
300
400
500

Fu
nc

ti
on

s

Total: 72.6s
Waiting: 21.4s

Startup Execution

(a) Local Ahead-of-Time (AOT) Compiler

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0

100
200
300
400
500

Fu
nc

ti
on

s

Total: 68.1s
Waiting: 16.4s

Startup Execution

(b) Local JIT Compiler

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0

100
200
300
400
500

Fu
nc

ti
on

s

Total: 72.7s
Waiting: 20.3s

Startup Execution

(c) Centralized JIT Compiler

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0

100
200
300
400
500

Fu
nc

ti
on

s
Total: 53.9s

Waiting: 2.5s

St
ar

tu
p Execution

(d) Centralized True-JIT Compiler
Figure 1. Execution traces with number of compiled func-
tions over time for the SPECCPU2017 x264 benchmark. Local
AOT compilation (in (a)) shows a distinct startup phase be-
fore code execution starts, whereas local and centralized JIT
compilation interleave compilation and execution during
startup (in (b) and (c)). Centralized JIT compilation increases
end-to-end execution time due to a prolonged startup phase.
True-JIT (in (d)) almost eliminates the startup phase as na-
tive code becomes available very quickly and end-to-end
execution time is being reduced.

we show execution traces with the number of compiled func-
tions (on the y-axis) over time (on the x-axis) for four differ-
ent compilation schemes: local AOT, local JIT, centralized
JIT and our novel predictive, centralized True-JIT scheme.
A local AOT scheme, i.e. an LVM with an integrated AOT
compiler, is shown in Figure 1a. Upon launch of the bench-
mark the AOT compiler kicks in and it takes several seconds
for native code to become available. Only after all functions
have been compiled execution will start.. After this initial
21 second AOT compilation phase no further code is being
compiled until the application terminates. Compare this to
the JIT scheme in Figure 1b, which employs an integrated
JIT compiler. Execution starts immediately, and functions
are compiled by the local JIT compiler as soon as they are
encountered in the startup phase. After around 16s the LVM
settles and enters a stable execution phase, which ends af-
ter around 68s. Next we show a centralized JIT compilation
scheme in Figure 1c, which is similar to e.g. [25]. We no-
tice that centralized JIT compilation takes more time than

2

Execution
Engine

Stub

Code
Injector

Local
Code
Cache

Jump
Table

Pr
ed

ic
to

r

C
on

tr
ol

le
r Clients

History

Global
Code Cache

Compilation
Queue

Delivery
Queue

Compilerless Language Virtual Machine

Compilerless Language Virtual Machine Compiler Server

Compilerless Language Virtual Machine

…

Compilation
Farm

WebAssembly
Modules

Repository
7

63 4 5

1

1

8 9

10

11 12

13

14 15Compilation
Req/Res

Register

Code
Injection

1 2

Figure 2. High-level overview of the True-JIT system architecture. A centralised JIT Compilation Server serves compilation
requests issued by LVM clients, and using an LSTM predictively compiles and delivers code likely to be used in the near future.

Ex
ec

ut
io

n
En

gi
ne

main
f
g
...

Stub

Code
Injector

2Empty
Local
Code
Cache

1 2 3

(a) Cold Start & Compilation Request

Pr
ed

ic
to

r WebAssembly to LLVM IR
C

on
tr

ol
le

r Clients
History

Global
Code Cache

Compilation
Queue

Delivery
Queue

3

10

4 4a 4b

5

9

6

8

7
WebAssembly

Modules
Repository4c

LLVM IR Optimization

Native Code Generation

(d) Handling a JIT Compilation Request

5

Ex
ec

ut
io

n
En

gi
ne

main <main>
f
g
...

Stub

Code
Injector

612 11 510

(b) Receiving Translated Code

Pr
ed

ic
to

r

C
on

tr
ol

le
r Clients

History

Global
Code Cache

Compilation
Queue

Delivery
Queue

13

14

WebAssembly
Modules

Repository
Compilation Farm

(e) Predictive Compilation

<f>
<g>

Ex
ec

ut
io

n
En

gi
ne

main <main>
f
g
...

Stub

Code
Injector

819 18 17

(c) Receiving Unsolicited Code

Pr
ed

ic
to

r

C
on

tr
ol

le
r Clients

History

Global
Code Cache

Compilation
Queue

Delivery
Queue

17

WebAssembly
Modules

Repository
Compilation Farm

1516

(f) Predictive Code Delivery

Figure 3. Internal operation of the compiler-less LVM (a) – (c) and the central True-JIT Compilation Server (d) – (f).

the local JIT scheme. This is because Intermediate Represen-
tation (IR) and compiled code code are transferred over a
network, which adds extra latency. In contrast, our central-
ized True-JIT compiler reduces the initial startup phase to
less than 3s, resulting in an overall runtime of under 54s.
This is due to True-JIT’s ability to predict what functions are
required next and to predictively compile and deliver them
to the LVM before they are needed, thus preventing stalls
resulting from misses in its local code cache.
We realize that a centralized JIT compiler provides am-

ple scope for effective caching of generated code, there are
opportunities for reuse of cached code across LVM clients,
and predicting what functions LVM clients encounter next
in their current execution is both feasible and worthwhile. In
the remainder of the paper we showwhat is required to make
such a predictive, centralized JIT system work effectively
and efficiently.

2 True-JIT: System Architecture, Operation,
Machine Learning Model and Training

In this section we introduce the system architecture of our
True-JIT system as shown in Figure 2 and explain how its
components (1 -15) interact with each other (1 -19) through-
out the execution of an application in Figure 3. We show the
operation of predictive JIT compilation and code delivery,
and explain our approach to model training and deployment.

2.1 True-JIT System Architecture
At the top level as shown in Figure 2, True-JIT comprises
a number of compiler-less LVMs 1 and a centralised JIT
Compilation Server 2 with an integrated WebAssembly
Module Repository 15 connected via a network.

Upon launching of an application the compiler-less Virtual
Machine (VM) 1 registers itself with the Compilation Server
2 . It communicates the application Uniform Resource Iden-
tifier (URI), i.e. its identifier in the WebAssembly Module

3

Repository 15 , along with other client information such as
its Instruction Set Architecture (ISA). Throughout execution
the VM issues compilation requests for individual functions
to the JIT Compiler Server. It receives responses from the cen-
tral server comprising the code generated for the requested
function. In addition to this request/response interaction
between LVMs and the JIT compilation server, the server
can also actively initiate code injection targeting any of the
registered LVMs. We use this mechanism to proactively pop-
ulate local code caches with native code, which is predicted
by the server to be most likely needed by an LVM client in
the near future.

2.2 LVM Client Operation
We narrow our focus to the operation of the LVM clients as
shown in Figure 3(a)–(c). Consider the cold start scenario
in Figure 3a, where the local code cache is empty and all
pointers in the jump table point towards the compilation
stub. The Execution Engine 3 inside the LVM then retrieves
1 a function pointer for the next function from the Jump
Table 4 , e.g. for function main, upon which we either lo-
cate the code for this function in the Local Code Cache 5 ,
or request remote compilation 2,3 of this function via JIT
client stub 6 . Functions already contained in the local code
cache can be invoked and executed immediately, whereas
remotely compiled functions can only be executed once code
has been delivered, linked, added to the local code cache and
the pointer in the jump table has been rewired. The update
of the jump table ensures that subsequent invocations of the
same function are being directed to the code now available
in the Local Code Cache.
The response of the central JIT compiler is shown in Fig-

ure 3b.When the compiler responds 10 to a previously issued
compilation request, compiled code is added 11 to the code
cache and the jump table is being updated 12 .
A code injection scenario is shown in Figure 3c. Unso-

licited code injection requests 17 from the central JIT com-
piler are routed via a code injector, which is responsible for
adding the delivered code to the local code cache 18 and
jump table 19 as before.

2.3 Central JIT Compiler Operation
We visualise the operation of the central JIT compiler in Fig-
ure 3(d)–(e) and cover handling of incoming JIT compilation
requests (in Figure 3d), predictive compilation (in Figure 3e),
and predictive code delivery (in Figure 3f).

2.3.1 Serving JIT Compilation Requests. Upon receiv-
ing a compilation request 3 from an LVM, the JIT Compila-
tion Controller 8 adds 4a this request to the client’s history
9 . It then checks 5 its Global Code Cache 10 . If available,
compiled code stored in the Global Code Cache is returned
9,10 to the client. Otherwise, the JIT Compilation Controller
instructs 6 the LLVM-based JIT Compilation Task Farm

14 (similar to [12]) to fetch 7 the relevant WebAssembly
function from the Module Repository 15 for compilation.
Once compiled, compiled code is registered 8 in the Global
Code Cache and further delivered to the client 9,19 .
Incoming compilation requests trigger 4a the predictor

11 , which relies on the client’s request history to determine
which functions to add 4b,4c to the Compilation Queue 12
or DeliveryQueue 13.

We distinguish between two predictive scenarios in True-JIT:
(a) Predictive JIT compilation, and (b) predictive code deliv-
ery. These two scenarios are illustrated in Figure 3e and
Figure 3f. Both scenarios involve the JIT compilation server
as an active entity.

2.3.2 Predictive JIT Compilation. The goal of predictive
JIT compilation is to ensure that as many as possible requests
to the JIT compilation server can be served from the global
code cache. This is achieved by speculatively compiling We-
bAssembly functions to native code before these have been
requested by any client.
True-JIT’s predictor captures a history window 8 of #

recent compilation requests for each client, which form the
basis for its prediction. The predictor then predicts a se-
quence of" functions most likely required by a client in the
near future. Both # and" are configurable, and we discuss
the impact of varying # and" in section 3. In True-JIT we
employ an LSTM for this prediction task, and provide details
concerning its configuration, training and deployment in
subsection 2.5 and subsection 2.6.

Global Variables

Linear Memory (4GB)

Ju
mp
Ta
bl
e

main_ptr

f_ptr

g_ptr

...

stub(FuncIdx):
 Code = RemoteCompiler.Get(FuncIdx)
 Addr = Linker.Load(Code)
 JumpTable[FuncIdx] = Addr
 JumpTable[FuncIdx](&RuntimeState)

f
g
...

main:
 ...
 mov rdi, 1
 mov rax, [jumptable + rdi * 8]
 jmp rax
 ...

Ru
nt
im
e
St
at
e

co
de

da
ta

(1)
call
main

Remote CompilerELF
object

wa
si

args_get

args_sizes_get

clock_res_get

...

(2)
call
stub

(3)
Get
Code

(5)
update
jumptable
&

execute

(6)
call f through jumptable

(4)
Load

Figure 4. Client LVM address space layout and function
invocation strategy utilising a dynamically updated jump
table.

4

Functions predicted to be required in the near future are
added to the Compilation Queue, which feeds 13 to the
server’s multi-threaded compilation task farm 14 , which
fetches the required WebAssembly functions from the mod-
ule repository before compiled code is added 14 to the global
code cache.

2.3.3 Predictive Code Delivery. The goal of predictive
code delivery is to ensure that requests to the central JIT
compilation server are minimised, and compiled code is avail-
able in the local code caches by the time it is needed by the
LVM clients.
To achieve this goal the Controller 8 inspects the De-

livery Queue 13 and retrieves 15,16 compiled code from
the global code cache 10 . It then actively pushes 17 these
compiled functions to an LVM client, ready for injection into
its local code cache.

2.4 Virtual Address Space Layout and Function
Invocation Strategy

The centralised JIT compiler needs to generate code that is
compatible with execution model of the LVM clients. This
affects, in particular, the organisation of the virtual address
space and approach to function invocation. Figure 4 shows
how we are solving both of these problems.
Each LVM client maintains a data and a (native) code re-

gion: In the data region we maintain the client’s runtime
state, including WebAssembly global variables and 4GB of
linear memory addressable by WebAssembly. In addition, we
maintain a jump table with function pointers to functions
stored in the code region.This implies that all calls to JIT gen-
erated functions are indirect calls, which must be resolved
through this jump table. In our evaluation in section 3 we
will see that the performance impact of this indirection is
negligible. Upon launch of an application this function jump
table is initialised for all pointers to point to a stub function,
which initiates remote compilation for the called function.
Once the code has been generated, delivered and linked, we
update the jump table to point to the native code in the code
region, thus making sure that subsequent calls to the same
function will execute directly from the local code cache in
the client’s code region. We additionally provide code wrap-
pers for WebAssembly System Interface (WASI) functions,
which provide convenient abstractions to system functions,
e.g. libc library functionality.

2.5 Machine Learning Model
We approach the task of language prediction as a sequence-
to-sequence task. Given a dataset D with # sequences

{(sn, cn) | = ∈ {0..#− 1}}

where sn is a sequence of function names and cn is the cor-
responding next function name in the sequence, we aim to

train a model T parameterised by) with maximum likeli-
hood estimation:

) ∗ = argmax
)

#−1∏
==0

% (cn | sn;))

In practice, weminimise the negative log-likelihood, which
is equivalent to cross-entropy (CE). For each mini-batch (i.e.,
group of � << # examples in the dataset), we use the Adam
optimiser to update the parameters of the model given the
gradient of the cross-entropy loss function:

V ()) = T (s=, c= |))

CE()) = −
!−1∑
;=1

log % ()) [cn [; + 1], ;]

) ′ =) − [· ∇CE())
where V ()) are the token probabilities predicted by the
model, ! is the sequence length, [is the learning rate hyper-
parameter, and) ′ are the updated parameters.

2.5.1 LSTM Model. We use an LSTM model, a type of
Recurrent Neural Network (RNN) that is capable of learning
long-term dependencies. The LSTM model consists of an
embedding layer, an LSTM layer, and a fully connected layer.
The embedding layer converts the input function names into
dense vectors of fixed size. The LSTM layer processes the
sequence of function name vectors and computes a hidden
state for each function name in the sequence. The fully con-
nected layer takes the hidden state of the last function name
in the sequence and outputs a probability distribution over
the next function name in the sequence.

2.6 Training and Deployment
Successful prediction necessitates training with relevant
training inputs, which result in representative application be-
haviours. In True-JIT we rely on offline training, i.e. training
ahead of time. However, we are also aware that introducing
an additional step in the software development workflow
would be an impediment to the wider adoption of True-JIT.
Hence, we leverage data collected during standard regression
testing for model training.

2.6.1 Regression Testing and Model Training. Con-
sider Figure 5 for an overview of the code submission, re-
gression testing, model training and deployment cycle for
True-JIT. Developers push 1 their application, e.g. as part
of their CI/CD workflow, to a cloud based repository. This
triggers compilation to WebAssembly 2 and automated
regression testing 3 against predefined test cases that exer-
cise a wide range of application behaviours, and in general,
ensure good code coverage [18]. The True-JIT compiler is
already being used for code generation during regression test-
ing, however, without its predictive capabilities. Instead, the
compiler traces JIT compilation requests 4 used for train-
ing 5 its application-specific LSTM model. After testing has

5

Application
Source Code

Developer Developer Developer Developer

Tests

Push Application

WASM
Module

Compile to
WebAssembly

VM VM VM VM

VM VM VM VM

VM VM VM VM

VM VM VM VM

Testing

Developers

User UserUser User

Users

Deploy

Compiler Server

Compilation Sequences Database

Compilation
Requests

Predictor
LSTM Model Training

Inference

Request

Cloud
2

3

6

4
5

9

8

7

1

Compilerless VMs

Figure 5. The True-JIT workflow: Model Training as part of
regression testing in a Continuous Integration/Continuous
Delivery (CI/CD) process.

F G

A

B C

ED

func A:
 if cond_1:
 call B
 else:
 call C

func B:
 if cond_2:
 call D
 else:
 call E

func C:
 if cond_3:
 call F
 else:
 call G

...

...

...

...
Workload#2

Workload#1

Workload#3

Workload#4

G --> ...
A --> C
C --> F
F --> ...
A --> B
B --> E
E --> ...
A --> B
B --> D
D --> ...

Collecting
Traces

Dataset
Generation

Trained
LSTM
Model

Traning

1

2

3

4

5

Figure 6.An example showing how training data is extracted
from sequences of JIT compilation requests (“traces”), each
representing an execution of the program with different
input data.

completed successfully, the application is being deployed 6 .
When this application is run 7 , compilation requests 8 are
being directed to the JIT compilation server, which then uses
its predictor for inference 9 .
We will see in section 3 that an LSTM trained for an ap-

plication is relatively robust w.r.t. application changes. This
means that can reuse a once trained model for e.g. a later
version of the same application despite potentially substan-
tial code changes. This is an advantage of True-JIT where a

predictive model can be easily reused, but generated native
code cannot.

2.6.2 Extraction of Training Data. Functions are identi-
fied by their ID, and we are collecting sequences of function
IDs (”traces”) resulting from the execution of target appli-
cations with different input data sets in the centralised JIT
compiler. A function ID is included in a trace the first time
the function is invoked, i.e. when it triggers JIT compila-
tion. Subsequent calls to the same function are not recorded
in the trace as these later invocations will be served out
of the client’s code cache and do not require JIT compila-
tion. Using compiler terminology, a trace is the result of
an in-order traversal of the dynamic call tree where dupli-
cates have been removed. Divergences in control flow as
a result of different inputs of an application will result in
multiple, different traces, which together are used to train
an application-specific LSTM. We illustrate this with an ex-
ample in Figure 6.

2.6.3 Model Architecture and Training Details. The
LSTMmodel has an embedding size of 32, a hidden size of 64,
and an output size equal to the size of the vocabulary. The
model is trained using the Adam optimiser [26] with a learn-
ing rate of 0.01. The loss function is cross-entropy, which
measures the dissimilarity between the predicted probability
distribution and the actual distribution. The model is trained
for 100 epochs. The trained model is retained for later use
by the JIT compiler server.

3 Evaluation
We evaluate the effectiveness of True-JIT in the CloudLab
data centre environment, using a range of application bench-
marks and real-world applications. We are mainly concerned
with True-JIT’s ability to reduce or eliminate JIT compilation
latency, but also investigate its ability for making accurate
predictions, its memory footprint and impact on network
overhead, as well as throughput and scalability. We also
compare True-JIT with other, non-distributed WebAssembly
runtimes, and the distributed JITServer JVM.

3.1 Experimental Methodology
We evaluate our True-JIT approach against benchmarks from
three different benchmark suites: SPEC CPU2017 [14], Poly-
Bench/C [32], JetStream 2 [22], CoreMark [1], MiBench [21]
and WABench [35], which includes whole applications from
various application domains. From the SPEC CPU2017 bench-
mark suite1 we use lbm, mcf, namd, x264, and nab, which
we compiled to WebAssembly using the Clang/LLVM com-
piler. Similarly, we have compiled the PolyBench/C, MiBench
and CoreMark codes to WebAssembly. From the JetStream 2
benchmark suite we use the gcc-loops, float-mm, HashSet,

1Other SPEC CPU2017 benchmarks fail to run in any of the tested Web-
ssembly environments due to partially unsupported WASI calls.

6

Node CloudLab Clemson r650
CPU 2×36-core Intel Xeon 8360Y, 2.4GHz

Memory 256GB (16×16GB DDR4 3200MHz ECC)
Storage 480GB SATA SSD
Network 2×100Gb Mellanox ConnectX-6, PCIe v4.0

Table 2. Specification of CloudLab nodes in our evaluation.

Parameter Values
Cloud Provider Google Cloud Platform, CloudLab

Compiler Server
1 Physical Node

1 Process
144 Threads

WebAssembly
Virtual Machines

32 Physical Nodes
10000 Processes
Single Thread

Benchmarks
SPEC 2017, PolyBench/C, NPB,
MiBench, JetStream2, CoreMark,

WABench

Global Code Cache Initial State Size
Cold, Warm Unbounded

Compilation Strategy AOT, JIT, TrueJIT
Predictor Architecture LSTM

Predictions History Depth
1, 2, …, 10 1, 2, …, 200

LVMs
Release Strategy

Simultaneous
Staggered (1, …, 1000ms)

Network Latency Bandwidth
1µs, …, 10ms 10, …, 100Gbps

Table 3. Experimental parameter space of our evaluation.

quicksort, and tsf benchmarks, which are provided as We-
bAssembly applications.
We have been running our experiments in a CloudLab

environment using virtual machines according to the speci-
fications in Table 2.
We provide a full overview of our benchmarking envi-

ronment and configuration space in Table 3. In individual
experimental settings we vary certain parameters to evaluate
aspects of the system’s behaviour. Across all experiments,
both local and global code caches are unbounded for the
purpose of our evaluation. In practice, though, we anticipate
the use of size-limited caches with more sophisticated code
cache management and replacement schemes, e.g. [23].
Throughout our evaluation we frequently refer to and

compare against the standard centralised JIT compilation
scheme, which is our re-implementation of the centralised
caching concept of JITServer [25] in our own framework.

3.2 Key Results
We show the True-JIT’s effectiveness in reducing JIT compi-
lation latency in Figure 7, where we compare JIT compilation

latency for three different schemes: Local JIT compilation
embedded in the LVM client, centralised JIT like in JITServer,
and True-JIT using an LSTM predictor trained prior to bench-
marking. For this experiment we run each benchmark on
10000 client LVMs, supported by a single JIT compilation
server for the two centralised compilation schemes. All code
caches are initially cold. Clients are being released in an
‘open loop’, i.e. we launch a new client every 10ms. This
scenario models the rapid up-scaling of a workload across
many client LVMs. We report our measurements of the total
JIT latency incurred by the LVM clients as speedup relative
to the local JIT compilation baseline.
We observe that all benchmarks benefit from centralised

JIT compilation, where total time spent on compilation as
experienced by LVM client is reduced. In fact, the standard
centralised JIT compilation scheme speeds up JIT compi-
lation by a factor of 7.6 due to the benefit of global code
caching. This is in line with the findings in [25]. True-JIT
further improves the JIT latency and we measure an average
speedup of 55.1 over local JIT compilation. This is strong
evidence for the efficacy of True-JIT’s ability to hide startup
JIT latency when up-scaling workloads.
Across benchmark suites there is relatively little varia-

tion and we see True-JIT deliver consistent JIT compilation
speedups for kernel and application benchmarks, even where
the standard centralised JIT approach without prediction ex-
periences greater variation, e.g. across some of theWABench
benchmarks.

3.3 Impact of Network Latency
How does True-JIT perform under conditions of increased net-
work latency? To answer this question we introduce addi-
tional network latency between the LVM clients and the JIT
server and observe the impact on JIT latency from the clients’
perspective. Ranging between 0-10ms an extra delay is added
to each network transfer to model the effect of increased
network latency. We show our findings in Figure 8, where
we compare JIT compilation slowdown as a function of addi-
tional network latency for both the standard centralised JIT
scheme and True-JIT. In line with our previous results in Fig-
ure 7 we see that even without additional latency, True-JIT
outperforms the standard centralised scheme in terms of
compilation latency by almost 8x. As we increase the net-
work latency we see compilation latency increasing for both
schemes. However, we observe that True-JIT is more effec-
tive in its ability to hide this increase in network latency.
At 10ms extra latency, True-JIT experiences a slowdown of
1.2 over the standard scheme at 0ms extra latency, whereas
the non-predictive standard scheme experiences a slowdown
of 25x. True-JIT’s ability to gracefully degrade in the face
of network latency can be ascribed to its predictive code
delivery mechanism, which ensures that local code caches
are more effective and experience fewer misses, resulting in
fewer latency-inducing JIT compilation requests.

7

2m
m
3m

m ad
i
ata

x
bicg

ch
oles

ky

co
rre

lat
ion

co
var

ian
ce

der
ich

e

doitg
en

durb
in

fd
td

-2d

floyd-w
ar

sh
all

gem
m

gem
ver

ges
um

m
v

gra
m

sch
m

id
t

hea
t-3

d

jac
obi-1

d

jac
obi-2

d lu

lu
dcm

p
m

vt

nussi
nov

se
id

el-
2d
sy

m
m
sy

r2
k
sy

rk

tri
so

lv
trm

m

bas
icm

ath

bitc
ount

cjp
eg
djpeg

str
in

gse
ar

ch

blowfish
-d

ec
ode

blowfish
-en

co
de

rij
ndae

l-d
ec

ode

rij
ndae

l-e
nco

de
sh

a

ra
wca

udio

ra
wdau

dio
crc

32
bzip

2

fac
ed

ete
cti

on

gnuch
es

s

es
pea

k
m

nist

sn
ap

py

white
db

lbm m
cf
x2

64 nab
nam

d

gcc
-lo

ops

float-
m

m

Has
hSe

t

quick
so

rt tsf bt cg ep ft is lu m
g sp

co
rem

ar
k Geom.

Mean

×1

×10

×100

Sp
ee

du
p

Polybench MiBench WABench SPEC JetStream NPB CoreMark

×7.6

×55.1

Local JIT Centralized JIT TrueJIT

Figure 7. Speedup of standard centralised JIT compilation without prediction and True-JIT over local JIT scheme. We consider
JIT compilation times only for our set of benchmarks. The standard centralised scheme already delivers a 7.6 speedup for JIT
compilation due to global code caching, while True-JIT results in an average speedup of 55.1 over local JIT compilation thanks
to its predictive JIT compilation and code delivery strategy (10000 clients, staggered release separated by 10ms).

0ms 1ms 2ms 5ms 10ms

×0.1

×1

×10

×100

Sl
ow

do
w

n

×1.00

×4.17 ×6.67
×14.07

×25.00

×0.12
×0.23 ×0.35

×0.66
×1.20

Centralized JIT
TrueJIT

Figure 8. Impact of network latency on JIT compilation per-
formance. We introduce additional network latency between
0-10ms and observe JIT compilation slowdown. Where the
standard centralized scheme suffers from increased network
latency, True-JIT’s performance degrades gracefully.

3.4 Network Overhead
How much network overhead is introduced by True-JIT? Send-
ing JIT compilation requests to the True-JIT compilation
server and, especially, transmitting compiled code back to
LVM clients introduces additional network traffic. In order
to quantify the impact of this additional network overhead
we analyse what fraction of waiting time (as experienced
by a LVM client) can be attributed to actual JIT compila-
tion as opposed to code requests and transmissions over the
network. We show our findings in Figure 9.
For this experiment we use the x264 application, which

with a binary code size of around 1MB is one of the larger
benchmarks used in our study. Execution of the benchmark
results in 38 distinct JIT compilation requests over a period
of 37s. We observe that network overhead contributes less
than 10% of the overall waiting time experienced by LVM
clients in either of the observed schemes, while the majority
of waiting time is due to JIT compilation. As we increase
additionally introduced network latency from 0 to 10ms as
in our previous experiment, we see True-JIT’s ability to hide
this increased latency, while the standard centralised JIT
scheme experiences a significant increase in client waiting
time.

For the x264 application with its 1MB code size used in this
experiment we observed an average bandwidth utilisation
of around 27kb/s for the transmission of code from the JIT
compiler to the LVM client. Thus, a single 10Gbit/s Ethernet
network connection would be capable of sustaining code
delivery for up to 30000-40000 LVM clients.

0ms 1ms 2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10ms
0
5

10
15
20

W
ai

ti
ng

Ti
m

e
(s

)

Centralized JIT Network Latency
Centralized JIT Compilation Latency

TrueJIT Network Latency
TrueJIT Compilation Latency

Figure 9. Breakdown of total client waiting time into (a) JIT
compilation latency and (b) network latency. Client waiting
time is dominated by JIT compilation, whereas network la-
tency only contributes less than 10% of the total waiting time.
As we increase additionally introduced network latency, we
see True-JIT’s ability to hide this latency unlike the non-
predictive centralised JIT compilation scheme.

3.5 Cold Start vs Warm Start
Can True-JIT improve over the standard centralised JIT scheme
once the global code cache has been warmed up? We set up an
experiment where we compare three scenarios: (a) Standard
centralised JIT compilation with a cold global code cache,
(b) standard centralised JIT compilation with a warm global
code cache, and (c) True-JIT with a warm global code cache.
In Figure 10 we show our findings based on the x264 bench-
mark and a single LVM. We treat the cold cache scenario
(a) as our baseline. Warming up the code cache for scenario
(b) results in a JIT compilation speedup of 11.3 – this is be-
cause native code can be served directly from the global code
cache, which is faster than actual JIT compilation. For the
True-JIT scenario we observe a further improvement, and
from the client’s perspective JIT compilation is sped up by
another 18.5x. This is due to True-JIT’s predictive code de-
livery, which does not wait until the LVM’s local cache runs
out of code, but proactively fills the local code cache and,
thus, avoids most JIT compilation requests altogether. This
confirms that True-JIT can indeed improve over centralised
JIT compilation with its warmed up global code cache as a
result of its proactive code delivery strategy.

3.6 Memory Footprint
What is the memory footprint of True-JIT? For this we com-
pare local JIT compilation and standard centralised JIT com-
pilation with True-JIT in Figure 11 for the SPEC CPU2017
x264 benchmark. For each scheme we measure its complete

8

2m
m
3m

m ad
i
ata

x
bicg

ch
oles

ky

co
rre

lat
ion

co
var

ian
ce

der
ich

e

doitg
en

durb
in

fd
td

-2d

floyd-w
ar

sh
all

gem
m

gem
ver

ges
um

m
v

gra
m

sch
m

id
t

hea
t-3

d

jac
obi-1

d

jac
obi-2

d lu

lu
dcm

p
m

vt

nussi
nov

se
id

el-
2d
sy

m
m
sy

r2
k
sy

rk

tri
so

lv
trm

m

bas
icm

ath

bitc
ount

cjp
eg
djpeg

str
in

gse
ar

ch

blowfish
-d

ec
ode

blowfish
-en

co
de

rij
ndae

l-d
ec

ode

rij
ndae

l-e
nco

de
sh

a

ra
wca

udio

ra
wdau

dio
crc

32
bzip

2

fac
ed

ete
cti

on

gnuch
es

s

es
pea

k
m

nist

sn
ap

py

white
db

lbm m
cf
x2

64 nab
nam

d

gcc
-lo

ops

float-
m

m

Has
hSe

t

quick
so

rt tsf bt cg ep ft is lu m
g sp

co
rem

ar
k Geom.

Mean

×1

×10

×100

Sp
ee

du
p

Polybench MiBench WABench SPEC JetStream NPB CoreMark

×11.3

×203.3

Centralized JIT with Cold Cache Centralized JIT with Warm Cache TrueJIT with Warm Cache

Figure 10. Comparison of the impact of warm global code caches for the centralised JIT scheme and True-JIT. While a warm
global code cache substantially reduces waiting time until code becomes available to LVM clients, True-JIT’s predictive code
delivery results in substantial further improvements as local code caches are being proactively populated just-time-time.

1 10 100 1000
0

1

10

100

1000

M
em

or
y

U
sa

ge
(G

B) Local JIT Centralized JIT TrueJIT

Figure 11. Aggregated client and server memory usage for
local JIT, centralised JIT and True-JIT for 1-1000 LVM nodes
running the SPEC CPU2017 x264 benchmark.

footprint for configurations between 1-1000 LVM clients.
For each configuration we include client and server mem-
ory usage accounting for each of their data and code areas,
code caches, and in the case of True-JIT, its integrated LSTM
predictor.

We observe that all three considered schemes scale linearly
with the number of LVM nodes. For very small configura-
tions the local JIT scheme has an advantage, e.g. in the 1-node
configuration the local JIT scheme occupies about half as
much memory as either of the two centralised schemes. This
is due to the memory cost of the distributed infrastructure,
e.g. communication libraries. However, already for 10 LVMs
the centralised schemes consume less memory than the lo-
cal scheme. The memory penalty for True-JIT’s predictor
is small, and for configurations with 10 or more clients the
memory consumption is on par with that of the standard
centralised scheme.

3.7 Throughput and Scalability
Are True-JIT’s centralised JIT compiler and predictor perfor-
mance bottlenecks? To answer this question we scale up the
number of LVM clients for a single JIT compilation server
and observe the JIT compilation latency for these clients.
This is shown in Figure 12 for the Polybench 2MM bench-
mark and configurations involving 1, 10, 100, and 1000 LVM
clients. We expect JIT compilation times to rise sharply once
we saturate the JIT compilation server. While we observe
that the range of observed latencies increases as we go from
a single client to 1000 clients, the average latencies remain
the same. The distribution widens as we scale up, possibly as
a result of beginning contention. However, as the majority
of requests to the centralised JIT server will be served from

1 10 100 1000
0.00

0.25

0.50

0.75

1.00

La
te

nc
y

(s
)

Figure 12. JIT latency distributions as the number of LVMs
is increased from 1 to 1000.

the global code cache, the effectiveness with which we can
lookup and retrieve code from this software cache is the de-
termining factor to True-JIT’s scalability, and replication can
be employed to increase its bandwidth [38]. We can conclude
that in this configuration with 1000 LVM clients we have
not yet encountered the end of True-JIT’s scalability curve.

3.8 Accuracy and Depth of Predictions
How accurate are the predictions made by True-JIT and how far
ahead can we predict? Consider Figure 14 in which we show
prediction accuracy of our LSTM for the SPEC CPU2017 gcc
in response to a selected prediction depth. Prediction depth
here is the number of JIT compilation requests in the future
that we expect to receive based on the current history of JIT
requests issued to the centralised JIT compiler. In Figure 14
we plot this accuracy over depth as an average across each
point of execution of the benchmark.

We observed an initially high prediction accuracy of over
95% for the immediately following JIT compilation request.
As a general trend we also observe that prediction accuracy
decreases as we increase the depth of prediction, i.e. pre-
diction further ahead into the future become less and less
reliable. Even at a prediction depth of 10 we still record a
prediction accuracy of 80%, which we will see later is still
good enough to translate into performance gains. In general,
the prediction accuracy follows a declining curve without
sharp drops all the way up to a depth of 100 where it drops
to 50%, which indicates relative robustness of our predictor.
Next, consider Figure 13 where we show relative benefit

of deeper predictions in terms of JIT compilation speedup.
Across all benchmarks we observe speedup of JIT compila-
tion as we progressive increase prediction depth from 1-gram
LSTM to 100-gram LSTM. The response to deeper prediction

9

2m
m

3m
m ad

i
ata

x
bicg

ch
oles

ky

co
rre

lat
ion

co
var

ian
ce

der
ich

e

doitg
en

durb
in

fd
td

-2d

floyd-w
ar

sh
all

gem
m

gem
ver

ges
um

m
v

gra
m

sch
m

id
t

hea
t-3

d

jac
obi-1

d

jac
obi-2

d lu

lu
dcm

p
m

vt

nussi
nov

se
id

el-
2d
sy

m
m
sy

r2
k

sy
rk

tri
so

lv
trm

m

bas
icm

ath

bitc
ount

cjp
eg

djpeg

str
in

gse
ar

ch

blowfish
-d

ec
ode

blowfish
-en

co
de

rij
ndae

l-d
ec

ode

rij
ndae

l-e
nco

de
sh

a

ra
wca

udio

ra
wdau

dio
crc

32
bzip

2

fac
ed

ete
cti

on

gnuch
es

s

es
pea

k
m

nist

sn
ap

py

white
db

lbm m
cf

x2
64 nab

nam
d

gcc
-lo

ops

float-
m

m

Has
hSe

t

quick
so

rt tsf bt cg ep ft is m
g sp

co
rem

ar
k Geom.

Mean

×1
×2
×3
×4
×5
×6
×7
×8
×9
×10

Sp
ee

du
p Polybench MiBench WABench SPEC JetStream NPB CoreMark

1 Gram LSTM 2 Gram LSTM 3 Gram LSTM 4 Gram LSTM 5 Gram LSTM 10 Gram LSTM 20 Gram LSTM 50 Gram LSTM 100 Gram LSTM 200 Gram LSTM

Figure 13. Achievable speedup of JIT compilation related waiting times in LVM clients in relation to the depth of prediction.
Deeper predictions lead to reduced JIT latency, but we observe diminishing returns with a sweet spot at around a depth of 10.

0 10 20 30 40 50 60 70 80 90 100
Prediction Depth

0
10
20
30
40
50
60
70
80
90

100

Pr
ed

ic
ti

on
A

cc
ur

ac
y

(%
)

Figure 14. Prediction accuracy vs prediction depth for the
SPEC CPU2017 gcc benchmark: While prediction accuracy
drops the further ahead we predict (depths), the slope of
decline is gentle and even 10 JIT compilation requests into
the future can be predicted with around 80% accuracy.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10
20
30
40
50
60
70
80
90

100

Pr
ed

ic
ti

on
A

cc
ur

ac
y

(%
)

Figure 15. Prediction accuracy over time as we predict the
10 functions ahead at each point during the execution of gcc.

depends on the specific benchmark, and we see variation
with some applications (e.g. stringsearch) only marginally
benefiting to others (e.g. x264) experiencing over 8x speedup
of JIT latency. Typically, applications with a large number
of functions benefit more from deeper prediction than small
benchmarks with few functions. We also observe diminish-
ing returns of ever-increasing prediction depth, with a sweet
spot at depth 10.

In Figure 15 we show how prediction accuracy is not con-
stant, but a function over time as we progress through pro-
gram execution. For the gcc benchmark shown in the dia-
gram, we initially observe 100% prediction accuracy, which
is related to application startup code that does not exhibit
any control flow variation. Throughout the execution we
observe alternating phases with lower and higher prediction
accuracy. This phase changing application behavior is well
studied and exploited, e.g. in processor simulation method-
ologies like SimPoint [31].

9 10 11 12 13 14 15 16 17 18

9

10

11

12

13

14

15

16

17

18

100 92 84 76 52 39 38 36 43 41

92 100 89 80 64 50 48 38 45 43

84 89 100 88 70 54 52 50 48 47

76 80 88 100 77 56 53 52 50 48

52 64 70 77 100 65 61 59 56 54

39 50 54 56 65 100 90 86 80 75

38 48 52 53 61 90 100 93 85 81

36 38 50 52 60 86 93 100 91 85

43 45 48 50 56 80 86 91 100 92

41 43 47 48 54 75 81 85 92 100

(a) Similarity

9 10 11 12 13 14 15 16 17 18

9

10

11

12

13

14

15

16

17

18

100 81 65 54 39 35 32 30 27 25

84 100 77 61 45 41 37 34 31 29

71 80 100 75 53 48 43 40 35 33

61 67 78 100 64 56 50 46 41 38

43 47 53 62 100 79 67 61 52 48

40 43 49 55 81 100 78 69 59 53

36 39 44 49 70 80 100 83 69 61

35 38 42 47 65 73 86 100 79 68

33 35 39 43 57 64 72 81 100 82

31 33 37 40 53 58 65 72 83 100

(b) Prediction Accuracy

Figure 16. Heatmaps of pair-wise Ratcliff/Obershelp simi-
larity scores between traces of LLVM 9.0 and later versions
(left), and prediction accuracy when the LSTM is trained
with LLVM 9.0 and evaluated against later versions (right).

3.9 Model Reuse
Can we reuse a predictive model without retraining for an-
other version of the same application? To answer this ques-
tion we set up an experiment involving all major versions
of the LLVM compiler framework ranging from version 9.0
(released in 2019) to 18.0 (released in 2024). We build each
compiler and use it to compile the sqlite3 library using opti-
misation level -O3. For each compilation run we record the
trace of invoked functions, in the same way as described for
our motivating example in section 1. We then compute the
similarity between traces (in Figure 16a) and the prediction
accuracy of our LSTM when trained with one version of
LLVM, and evaluated against all other versions in turn (in
Figure 16b).
Despite significant code changes between major LLVM

versions, there is a high degree of similarity between JIT
compilation traces. Those from LLVM 9.0 and 10.0 exhibit
more than 90% of similarity, and between versions 9.0 and
11.0 we still observe 84% similarity. Even between extremes,
i.e. versions 9.0 and 18.0 released 5 years apart, more than
40% of similarity can found.This similarity directly translates
into prediction accuracy. An LSTM trained with version 9.0
still provides over 80% prediction accuracy when evaluated
against version 10.0. While prediction accuracy drops faster
than similarity, this experiment demonstrates that our pre-
diction model is robust enough to be useful even when the

10

Wasmer
(Singlepass)

GraalWasm Wazero Wasmer
(Cranelift)

True-JIT Wasmtime
(Cranelift)

Wasmer
(LLVM)

WAVM
50%

75%

100%

125%

R
el

at
iv

e
Pe

rf
or

m
an

ce

%59
%68

%75

%98 %100 %102 %102 %103

Figure 17. Comparing True-JIT with other WebAssembly
environments using a weighted geometric mean of end-to-
end execution times across benchmarks. True-JIT delivers
similar code quality as its top-performing competitors.

underlying application has gone through major revisions,
confirming that reuse of a model without retraining is viable.

3.10 Comparison to Other WebAssembly LVMs
How does True-JIT’s performance compare to that of other We-
bAssembly runtimes? We have compared True-JIT to state-
of-the-art JIT-compiled WebAssembly runtimes, including
Wasmer [3] (LLVM, Cranelift, Singlepass), WAVM [5], Wasm-
time [4], Wazero [6], GraalWasm [2]. Performance results
as weighted geometric mean over the set of benchmarks
used in this paper are plotted in Figure 17, normalised to
True-JIT’s baseline performance. Measuring end-to-end per-
formance, i.e. combined execution time and JIT compilation
time, True-JIT is on par with Wasmer (LLVM and Cranelift),
WAVM and Wasmtime (Cranelift) and significantly exceeds
the performance of Wazero, GraalWasm, and Wasmer (Sin-
glepass). These results confirm that True-JIT is able to com-
pete with the top-performing WebAssembly runtimes fea-
turing integrated JIT compilers.

3.11 Summary of Results
Our evaluation shows that:

• Centralized JIT compilation, even when utilizing a
global code cache like JITServer, introduces additional
compilation latency due to network transfers of com-
pilation requests and code.

• JIT compilation sequences for an application exhibit a
high degree of similarity, evenwhen runwith different
inputs.

• LSTMs can effectively learn JIT compilation sequences
and be used to predict the next = functions to compile.

• It is feasible to speculatively compile and deliver code
to LVMs, largely hiding JIT compilation latency in a
distributed environment.

• True-JIT’s predictive JIT compilation and code de-
livery approach is particularly suitable to latency-
sensitive environments such as FaaS where workloads
need to be upscaled quickly.

• Training of the predictor for the True-JIT scheme can
be incorporated in an CI/CD workflow, and trained
models can be successfully reused across versions of
the same application.

4 Related Work
JITServer [25] has been an inspiration for the work presented
in this paper. JITServer is a disaggregated caching JIT com-
piler implemented in the Eclipse OpenJ9 JVM. Aiming for
improvements of system-wide resource utilisation it pioneers
centralised caching of compiled native code and its reuse
in JVMs running on different client machines. In our work
we go beyond centralised caching and explore speculative
code compilation and code delivery in a WebAssembly en-
vironment, thus hiding the latency introduced by moving
the JIT compiler out of the LVM and placing it on a different
machine. Persistent code caches and code sharing across pro-
cesses has been studied in e.g. [13, 20] as an effective means
to reuse JIT compiled code. ShareJIT [37] introduces a global
code cache and code sharing across processes in the Android
ART runtime. Conceptually, JITServer and ShareJIT are simi-
lar in their use of a global code cache, but ShareJIT is limited
to a single host whereas JITServer can serve multiple net-
worked clients. Code sharing in ShareJIT results in reduced
JIT compilation time like in our True-JIT scheme, whereas
JITServer improves overall system utilization at the cost of
increased JIT compilation time. While earlier work exists,
this is typically restricted to sharing of meta-information, but
not compiled code [19]. Prediction of control flow outside
the realm of processor microarchitecture typically focuses
on branch behaviour [28], and not sequences of functions.

5 Summary & Conclusions
In this paper we have introduced our predictive True-JIT
framework, which utilises machine learning for the predic-
tion of future JIT compilation requests and code required by
actively running WebAssembly LVM clients. We show that
JIT compilation requests can be successfully predicted, and
we exploit this to proactively compile code in a centralised
JIT compiler and deliver native code to LVM clients before
these issue JIT compilation requests. We have demonstrated
True-JIT’s ability to hide JIT compilation latency across a
wide range of benchmarks running in a cloud environment.
We observe substantial reductions in waiting time for LVM
clients while incurring only minimal network and memory
overheads. True-JIT is particularly suited to support the rapid
auto-scaling of workloads with ultra-low startup latency as
required by FaaS.

5.1 Future Work
We will investigate methods for eliminating the need for
training of new applications, e.g. by transfer learningwhere a
pre-trained model is being re-used for a different application.
Furthermore, we plan to integrate dynamic optimisation and
code versioning into True-JIT.

11

References
[1] A benchmark characterization of the eembc benchmark suite. IEEE

Micro, 29(5):18–29, 2009.
[2] Graalwasm, 2024.
[3] Wasmer, 2024.
[4] Wasmtime, 2024.
[5] Wavm, 2024.
[6] Wazero, 2024.
[7] José Nelson Amaral, Edson Borin, Dylan R. Ashley, Caian Benedicto,

Elliot Colp, Joao Henrique Stange Hoffmam, Marcus Karpoff, Erick
Ochoa, Morgan Redshaw, and Raphael Ernani Rodrigues. The alberta
workloads for the spec cpu 2017 benchmark suite. In ISPASS, pages
159–168. IEEE Computer Society, 2018.

[8] TimAnderson. Azul lays claim tomassive efficiency gains with remote
compilation for Java, 2021.

[9] Rafael Auler, Edson Borin, Peli de Halleux, Michał Moskal, and Nikolai
Tillmann. Addressing JavaScript JIT engines performance quirks:
A crowdsourced adaptive compiler. In Compiler Construction: 23rd
International Conference, CC 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings 23, pages 218–237. Springer, 2014.

[10] Sean Kenneth Barker and Prashant Shenoy. Empirical evaluation of
latency-sensitive application performance in the cloud. In Proceedings
of the first annual ACM SIGMM conference on Multimedia systems,
pages 35–46, 2010.

[11] P. Black. Ratcliff/obershelp pattern recognition.
[12] Igor Böhm, Tobias J.K. Edler von Koch, Stephen C. Kyle, Björn Franke,

and Nigel Topham. Generalized just-in-time trace compilation using
a parallel task farm in a dynamic binary translator. SIGPLAN Not.,
46(6):74–85, jun 2011.

[13] Derek Bruening and Vladimir Kiriansky. Process-shared and persistent
code caches. In Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’08,
page 61–70, New York, NY, USA, 2008. Association for Computing
Machinery.

[14] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec
cpu2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineer-
ing, ICPE ’18, page 41–42, New York, NY, USA, 2018. Association for
Computing Machinery.

[15] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. Optimization of
resource provisioning cost in cloud computing. IEEE transactions on
services Computing, 5(2):164–177, 2011.

[16] Eric Coffin, Scott Young, Kenneth B Kent, and Marius Pirvu. A
roadmap for extending MicroJIT: a lightweight just-in-time compiler
for decreasing startup time. In Proceedings of the 29th Annual Interna-
tional Conference on Computer Science and Software Engineering, pages
293–298, 2019.

[17] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson, and M. Wol-
czko. Compiling java just in time. IEEE Micro, 17(3):36–43, 1997.

[18] Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche.
Coverage-based regression test case selection, minimization and pri-
oritization: a case study on an industrial system. Software Testing,
Verification and Reliability, 25(4):371–396, 2015.

[19] D. Dillenberger, R. Bordawekar, C. W. Clark III, D. Durand, D. Emmes,
O. Gohda, S. Howard, M. F. Oliver, F. Samuel, and R. W. St. John.
Building a java virtual machine for server applications: The jvm on
os/390. IBM Systems Journal, 39(1):194–210, 2000.

[20] Lauren Guckert, Mike O’Connor, S Kumar Ravindranath, Zhuoran
Zhao, and V Janapa Reddi. A case for persistent caching of compiled
javascript code in mobile web browsers. In Workshop on Architectural
and Microarchitectural Support for Binary Translation (AMAS-BT), 2013.

[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown. Mibench: A free, commercially representative embedded

benchmark suite. In Proceedings of the Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop, WWC ’01, page 3–14,
USA, 2001. IEEE Computer Society.

[22] David Y. Hancock, Jeremy Fischer, John Michael Lowe, Winona Snapp-
Childs, Marlon Pierce, Suresh Marru, J. Eric Coulter, Matthew Vaughn,
Brian Beck, Nirav Merchant, Edwin Skidmore, and Gwen Jacobs. Jet-
stream2: Accelerating cloud computing via jetstream. In Practice and
Experience in Advanced Research Computing, PEARC ’21, New York,
NY, USA, 2021. Association for Computing Machinery.

[23] Tim Hartley, Foivos S. Zakkak, Andy Nisbet, Christos Kotselidis, and
Mikel Luján. Just-in-time compilation on arm—a closer look at call-site
code consistency. ACM Trans. Archit. Code Optim., 19(4), sep 2022.

[24] Serhii Ivanenko, Rodrigo Bruno, Jovan Stevanovic, Luís Veiga, and
Vojin Jovanovic. Cloudjit: A just-in-time faas optimizer (work in
progress). In Proceedings of the 20th ACM SIGPLAN International Con-
ference onManaged Programming Languages and Runtimes, MPLR 2023,
page 12–19, New York, NY, USA, 2023. Association for Computing
Machinery.

[25] Alexey Khrabrov, Marius Pirvu, Vijay Sundaresan, and Eyal de Lara.
Jitserver: Disaggregated caching JIT compiler for the JVM in the cloud.
In Jiri Schindler and Noa Zilberman, editors, 2022 USENIX Annual
Technical Conference, USENIX ATC 2022, Carlsbad, CA, USA, July 11-13,
2022, pages 869–884. USENIX Association, 2022.

[26] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In International Conference on Learning Representations
(ICLR), San Diega, CA, USA, 2015.

[27] Chandra J Krintz, David Grove, Vivek Sarkar, and Brad Calder. Re-
ducing the overhead of dynamic compilation. Software: Practice and
Experience, 31(8):717–738, 2001.

[28] Tao Li, Lizy Kurian John, Anand Sivasubramaniam, N. Vijaykrishnan,
and Juan Rubio. Understanding and improving operating system
effects in control flow prediction. SIGPLAN Not., 37(10):68–80, oct
2002.

[29] Geetha Manjunath and Venkatesh Krishnan. A small hybrid JIT for
embedded systems. ACM SIGPLAN Notices, 35(4):44–50, 2000.

[30] Hyeong-Seok Oh, Beom-Jun Kim, Hyung-Kyu Choi, and Soo-Mook
Moon. Evaluation of Android Dalvik virtual machine. In Proceedings
of the 10th international workshop on java technologies for real-time
and embedded systems, pages 115–124, 2012.

[31] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sher-
wood, and Brad Calder. Using simpoint for accurate and efficient
simulation. In Proceedings of the 2003 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems, SIG-
METRICS ’03, page 318–319, New York, NY, USA, 2003. Association
for Computing Machinery.

[32] Louis-Noël Pouchet et al. Polybench: The polyhedral benchmark suite.
URL: http://www. cs. ucla. edu/pouchet/software/polybench, 437:1–1,
2012.

[33] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Ko-
matsu, and Toshio Nakatani. A dynamic optimization framework for
a Java just-in-time compiler. ACM SIGPLAN Notices, 36(11):180–195,
2001.

[34] Guillermo L Taboada, Sabela Ramos, Roberto R Expósito, Juan Tourino,
and Ramón Doallo. Java in the high performance computing arena:
Research, practice and experience. Science of Computer Programming,
78(5):425–444, 2013.

[35] Wenwen Wang. How far we’ve come – a characterization study of
standalone webassembly runtimes. In 2022 IEEE International Sympo-
sium on Workload Characterization (IISWC), pages 228–241, 2022.

[36] Elliott Wen and Jens Dietrich. Wasmslim: Optimizing webassembly
binary distribution via automatic module splitting. In 2023 IEEE Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 673–677, 2023.

12

[37] Xiaoran Xu, Keith Cooper, Jacob Brock, Yan Zhang, and Handong
Ye. Sharejit: Jit code cache sharing across processes and its practical
implementation. Proc. ACM Program. Lang., 2(OOPSLA), oct 2018.

[38] P. Yu, A. Leff, and J. Wolf. Replication algorithms in a remote caching
architecture. IEEE Transactions on Parallel & Distributed Systems,

4(11):1185–1204, nov 1993.
[39] Xianrong Zheng, Patrick Martin, Kathryn Brohman, and Li Da Xu.

CLOUDQUAL: a quality model for cloud services. IEEE transactions
on industrial informatics, 10(2):1527–1536, 2014.

13

	Abstract
	1 Introduction
	1.1 Key Ideas
	1.2 Contributions
	1.3 Motivating Observations

	2 True-JIT: System Architecture, Operation, Machine Learning Model and Training
	2.1 True-JIT System Architecture
	2.2 LVM Client Operation
	2.3 Central JIT Compiler Operation
	2.4 Virtual Address Space Layout and Function Invocation Strategy
	2.5 Machine Learning Model
	2.6 Training and Deployment

	3 Evaluation
	3.1 Experimental Methodology
	3.2 Key Results
	3.3 Impact of Network Latency
	3.4 Network Overhead
	3.5 Cold Start vs Warm Start
	3.6 Memory Footprint
	3.7 Throughput and Scalability
	3.8 Accuracy and Depth of Predictions
	3.9 Model Reuse
	3.10 Comparison to Other WebAssembly LVM
	3.11 Summary of Results

	4 Related Work
	5 Summary & Conclusions
	5.1 Future Work

	References

