
Designing Transport-Level Encryption for Datacenter Networks
Tianyi Gao, Xinshu Ma, Suhas Narreddy, Eugenio Luo, Steven W. D. Chien, Michio

Honda

University of Edinburgh

ABSTRACT
Datacenter transport protocols, pioneered by DCTCP [1],

have evolved over the last decade to achieve high throughput

for bulk data transfer while maintaining low latency for small

messages. The latest ones, including NDP [2] and Homa [5],

are not extensions to TCP—they are message-based and often

receiver-driven, where the receiver schedules the senders for

packet transmissions to enable fine-grained network utiliza-

tion. While most of these protocols have been implemented

in user space or simulators, the availability of the Linux ker-

nel implementation of Homa since 2021 [7], along with its

demonstrated use in industry [4], makes widespread adop-

tion of alternative transport protocols within reach.

However, what if the applications want data encryption to

isolate themselves from other tenants and protect themselves

from network infrastructure? Many cloud operators host

multiple tenants. Furthermore, even hyperscalers do not

build every datacenter component on their own; they source

many, such as switches, cables, and interface modules, from

external vendors, which could be later found vulnerable or

malicious. It is thus common for datacenter applications or

tenants to seek encryption for their network data, just as

they would over the Internet.

Adding encryption to datacenter transport is challenging

because it may sacrifice important transport properties. We

present Secure Datacenter Transport protocol (SDT), a design

for datacenter transport encryption that preserves three key

properties important to protocol designers and datacenter

operators.

The first property is transport-level support for in-network
compute, as defined in MTP [9]. MTP argues the need for the

network to identify boundaries of application-level messages,

which can be encrypted, within the flow for load balancing,

congestion control and fairness guarantee.

The second is compatibility with existing hardware of-

fload, particularly for cryptographic operations. Although

hardware-based transports with custom NICs have been in-

troduced by hyperscalers, smaller operators would perfer a

protocol that is open and can be accelerated by commodity

NICs.

The last, but not least is natural introduction of a new

transport protocol. Although deploying a new transport pro-

tocol without UDP encapsulation in the Internet is almost

hopeless due to unmodifiable middleboxes [6, 3], this is not

the case in datacenters. New protocols, alongside TCP and

UDP, would ease network management, in-network compute

and load balancing within the host stack.

SDT supports unordered, arbitrary-length encrypted mes-

sages over an authenticated session, but with plaintext mes-

sage identifiers and offsets in packets. This enables the net-

work or the host stack to perform message-granularity op-

erations, such as load balancing. SDT uses TLS offload and

segmentation offload available in commodity NICs [8]. Un-

like TLS/TCP, SDT enables message-level parallelism in the

host stack by serializing the messages into the TLS record

sequence only at the bottom of the stack in a rate-controlled

manner, preserving the in-host load balancing property re-

quired by message-based transports.

This work makes two main contributions:

(1) Identifying a design point for an encrypted message-

based datacenter transport protocol that is protocol-number-

agnostic, general for other datacenter transports like

NDP, and compatible with existing TLS offload.

(2) A proof-of-concept implementation of SDT that exhibits

at most 41% lower overhead than TLS/TCP. We also re-

port the implications of this contribution: the porting

effort of the application, Redis, and in-kernel user, NVMe-

oF, to use SDT, and enabling fast, 0-RTT key exchange

for SDT.

REFERENCES
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Pa-

tel, B. Prabhakar, S. Sengupta, and M. Sridharan. “Data

Center TCP (DCTCP)”. ACM SIGCOMM. 2010.

[2] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.

Moore, G. Antichi, and M. Wójcik. “Re-Architecting

Datacenter Networks and Stacks for Low Latency and

High Performance”. ACM SIGCOMM. 2017.

[3] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multi-
plexed and Secure Transport. RFC 9000. May 2021. url:

https://www.rfc-editor.org/info/rfc9000.

[4] X. Lu and zijian Zhang. Leveraging Homa: Enhancing
Datacenter RPC Transport Protocols. The Technical Con-
ference on Linux Networking (Netdev 0x17), https://

netdevconf.info/0x17/docs/netdev-0x17-paper36-talk-

paper.pdf. 2023.

1

https://www.rfc-editor.org/info/rfc9000
https://netdevconf.info/0x17/docs/netdev-0x17-paper36-talk-paper.pdf
https://netdevconf.info/0x17/docs/netdev-0x17-paper36-talk-paper.pdf
https://netdevconf.info/0x17/docs/netdev-0x17-paper36-talk-paper.pdf


Tianyi Gao, Xinshu Ma, Suhas Narreddy, Eugenio Luo, Steven W. D. Chien, Michio Honda

University of Edinburgh

[5] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.

“Homa: A Receiver-Driven Low-Latency Transport Pro-

tocol Using Network Priorities”. ACM SIGCOMM. 2018.

[6] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Amin, and

B. Ford. “Fitting Square Pegs Through Round Pipes:

Unordered Delivery {Wire-Compatible} with {TCP}
and {TLS}”. USENIX NSDI. 2012.

[7] J. Ousterhout. “A Linux Kernel Implementation of the

Homa Transport Protocol”. USENIX ATC. Jul. 2021.

[8] B. Pismenny, H. Eran, A. Yehezkel, L. Liss, A. Morri-

son, and D. Tsafrir. “Autonomous NIC offloads”. ACM
ASPLOS. 2021.

[9] B. E. Stephens, D. Grassi, H. Almasi, T. Ji, B. Vamanan,

and A. Akella. “TCP is Harmful to In-Network Comput-

ing: Designing a Message Transport Protocol (MTP)”.

ACM HotNets. 2021.

2


	Abstract
	References

