
Multiparty Session Types: Paxos Made Easy

Leonid Nosovitskiy

Abstract

Paxos [1] is a fault-tolerant consensus algorithm that enables distributed systems to agree
on a single value despite failure. Paxos and its variants are heavily used in systems like:
Google Chubby, Microsoft Azure Cosmos DB, and Apache Cassandra. Paxos presents
several challenges, as it is difficult to understand and implement correctly due to its
intricate message exchanges and failure-handling mechanisms. Difficult scenarios happen
when, for example, an acceptor first agrees to one proposer, then receives an earlier and
better proposal request to which other acceptors agreed to. The scenario becomes even
more difficult when we need to account for an unreliable network or power cuts.

Multiparty Session Types [2] (MPST) provide a framework for describing and enforc-
ing structured communication among distributed participants, making them well-suited
for addressing Paxos challenges. Key properties of the MPST framework, such as static
code verification, deadlock freedom, liveness, session fidelity, and correct message order-
ing, are particularly valuable in tackling these challenges.

To facilitate the representation of Paxos using MPST, we first break the protocol
into smaller components, implement them assuming a reliable network, and then refactor
the protocol to handle failures. To address this task without introducing new theory,
we extend Scribble (a DSL used by MPST) with syntactic sugar to make MPST more
modular to make global protocols even easier to build and compose. Additionally, we
extend Scribble and Effpi (MPST library for Scala) to support default communications,
which present a fine-grained approach to imitate crashed links, originally introduced as
optional blocks [3]. Finally, we extend Teatrino [4](a toolchain that utilises MPST with
crash-stop semantics and generates code) to be able to semi-automatically refactor a
reliable global protocol to accommodate for unreliable network, and subsequently adapt
associated code to reflect the changes in the global protocol.

With these changes, we aim to produce a toolchain which would make MPST more
accessible to creating correct by construction code for industry relevant processes like
Paxos.

In this talk, we will present the current state of our project, where we implement our
version of Paxos with two proposers and three acceptors. We will discuss the challenges
of semi-automatic refactoring, how we addressed them, and how we used our tool to
refactor our Paxos implementation. Finally, we will cover the remaining challenges that
have yet to be addressed and implemented.

1



References

[1] S. Aggarwal, “Raft and paxos : Consensus algorithms for
distributed systems,” https://medium.com/@mani.saksham12/
raft-and-paxos-consensus-algorithms-for-distributed-systems-138cd7c2d35a, 2023,
accessed: 4 February 2025.

[2] N. Yoshida and L. Gheri, “A Very Gentle Introduction to Multiparty Session Types,”
in 16th International Conference on Distributed Computing and Internet Technology,
ser. LNCS, vol. 11969. Springer, 2020, pp. 73–93.

[3] M. Adameit, K. Peters, and U. Nestmann, “Session types for link failures
(technical report),” CoRR, vol. abs/1607.07286, 2016. [Online]. Available:
http://arxiv.org/abs/1607.07286

[4] A. D. Barwell, P. Hou, N. Yoshida, and F. Zhou, “Designing Asynchronous Multiparty
Protocols with Crash-Stop Failures,” in 37th European Conference on Object-Oriented
Programming (ECOOP 2023), ser. Leibniz International Proceedings in Informatics
(LIPIcs), K. Ali and G. Salvaneschi, Eds., vol. 263. Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023, pp. 1:1–1:30. [Online]. Available:
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.1

2


