
 

 

Query execution in schema-optional graph databases generally consists of matching 
regular query patterns against the data graph, an application of the subgraph 
isomorphism problem. Without building exhaustive indices, such queries are typically 
far harder to optimize than relational queries, which can be resolved against the 
database schema and take advantage of its static typing. This is due to the 
comparatively reduced structure in the storage layouts of schema-optional databases 
to accommodate polymorphism, which increases the number of unnecessary pointer 
accesses that need to be performed in order to ensure result correctness, potentially 
between sparsely located records. 

Conventional wisdom advocates for providing as much information as possible in the 
query pattern to aid optimization; however, we can demonstrate that Cypher behaves 
inconsistently in practice and, in some cases, removing information from a query 
actually improves performance. We use the Labelled Subgraph Query Benchmark 
(LSQB) dataset to show this phenomenon and, in one case, demonstrate that a 3x 
performance improvement is possible. Particularly, we examine cases where traversals 
can be pruned from the ends of paths, and where labels can be removed from nodes or 
relationships, without modifying the semantics of the query. We also show a case 
where the same techniques instead reduce performance, highlighting the need for 
selectivity in applying them. Metadata collected from the storage layer has historically 
been used in query plan selection and has the further potential to guide such cases. 

In this workshop, we demonstrate how to modify the Cypher queries without changing 
query semantics by considering the schema used for generation of the LSQB dataset. 
We then analyze the resulting query plans produced by Neo4j and compare them to the 
original query plans to understand how performance is improved or worsened. Finally, 
we discuss how we repurpose storage layer metadata to drive query optimization by 
identifying and selectively apply such schema-based optimizations in the absence of a 
provided schema, a technique that has wide applicability in schema-optional graph 
databases. 

 


