
Aurendil Project 
Graph databases are an increasingly popular method for storing data 
because they allow developers to model and query complex domains. 
For this reason, graph databases are ideally suited to many tasks that 
support future AI applications, such as building knowledge graphs and 
analyzing complex networks. 

In this talk, we will introduce Aurendil, a project exploring how we 
construct next-generation query runtimes for cloud-based graph 
databases. Importantly, Aurendil departs from the traditional construction 
of query languages and looks to instead lean on concepts from 
programming language runtimes, such as the Java Virtual Machine, to 
permit queries to be dynamically compiled and optimized over 
successive executions. Such a shift in thinking will open up our 
integration options with modern cloud hardware, allowing us to use 
GPGPUs, FPGAs, and Smart NICS to drive up scalability and 
performance.

Over the lifetime of the Aurendil project, there are three significant 
challenges to address: increasing the efficiency of graph database 
technology to lower operational costs and improve performance; 
developing technologies to scale graph databases so that they can cope 
with the exponential growth of users' data; and addressing the evolving 
landscape of computer hardware.

Our starting point is to revisit how Graph Pattern Matching (GPM) works 
in contemporary graph databases at a fundamental level and whether 
we can improve performance, scalability, and stability. We will show that 
specific GPM queries encounter problems such as excessive memory 
usage or pathologically bad performance due to the volume of 
intermediate results that they have or materialize or their inability to 
optimize specific types of GPM query.

Over the past six months, we have been constructing an optimizing 
framework that drastically improves the hardware efficiency of GPM 
matching in Neo4j. Our alternate execution model for GPM and use of a 
more programming language like intermediate representation (IR) help 



to support a broader range of dynamic optimization, enabling us to 
perform optimization at a much finer granularity than before. For 
example, we can show how to reduce complex GPM queries into 
semantically equivalent but simpler forms that take advantage of 
schema metadata to eliminate the need to access the database 
completely. Our results show that our Aurendil prototype can perform the 
same GPM queries with a dramatically reduced memory footprint, which 
means we can tackle larger problems with less hardware. Finally, we will 
outline the next steps for the Aurendil project. 


