
Achieving Balanced Lock Usage Fairness and Lock Utilization using

Wuji-Locks

Leping Li∗, Xueheng Wang∗, Yuvraj Patel

1 Abstract

As processor clock speeds plateau, software de-
velopers increasingly turn to concurrency and
multicore machines to boost performance. Locks
are crucial for synchronizing concurrent events
and ensuring mutual exclusion and are com-
monly used in building concurrent software
like operating systems, servers, and key-value
stores. Lock designers focus on specific prop-
erties that locks should exhibit while designing
locks, thereby representing different worlds. For
example, spinlocks are simple locks where the
cache coherence governs who will acquire the
lock and is designed with a focus on high lock uti-
lization and performance. However, they cannot
ensure lock usage fairness and may starve one or
more threads. On the other hand, Scheduler–
Cooperative Locks (SCLs) are complex locks
that track the lock usage of the competing enti-
ties and dedicate a window of opportunity where
only a single entity can acquire the lock multi-
ple times while all other entities wait for their
opportunities. SCLs guarantee lock usage fair-
ness by penalizing dominant lock entities to give
more opportunities to other entities. Thus, SCLs
are non-work conservative and may compromise
lock utilization to guarantee lock usage fairness.
We observe none of the existing locks can effec-
tively ensure high lock utilization and lock usage
fairness. In this work, we ask the question – is it
possible to design a lock that can guarantee both
high lock usage fairness and high lock utilization.

*Both authors contributed equally to this work.

To address the problem, we understand the
desired behavior by identifying under what cir-
cumstances one can achieve high lock usage fair-
ness and high utilization and make specific ob-
servations. Using these observations, we build
Wuji Locks (W-Locks) – a new family of lock-
ing primitives that can guarantee both high lock
usage fairness and high lock utilization. Like
SCLs, W-Locks provide a window of opportu-
nity to entities. However, other compatible en-
tities also share the same window whose critical
and non-critical sections align well, thereby in-
creasing the lock utilization. W-Locks prioritize
non-dominant entities while forming groups that
can share the window of opportunity and penal-
ize dominant entities. Our design avoids scala-
bility collapse, ensures lock acquisition fairness,
and incurs minimal overhead.

W-Locks implementation comprises two com-
ponents – mechanism and policy. The mech-
anism handles the lock acquisition and release
procedures. The policy represents the strategy
determining the lock behavior exhibiting desired
lock properties. Our design provides both ro-
bustness and flexibility, enabling W-Locks to
adapt to diverse goals and environments with
minimal effort. We implement three locks com-
prising a userspace W-Lock, a NUMA-aware W-
Lock, and a reader-writer lock.

Using microbenchmarks and real-world ap-
plications, we show W-Locks can achieve high
lock usage fairness and lock utilization in var-
ied and extreme scenarios compared to exist-
ing locks. Additionally, we perform lock over-

1



head and latency sensitivity study to show W-
Locks can scale well up to 40 CPUs and deliver
low latency to latency-sensitive applications. To
show real-world applicability, we port W-Locks
to UpScaleDB, KyotoCabinet, and Memcached
to compare the performance of W-Locks against
other state-of-the-art locks. Our experiments
show that W-Locks can dramatically enhance
the performance of real-world applications.

2


