
NewCARD: A Vertically Integrated 
Teaching Tool for Microarchitecture

Mária Ďuračková
University of Edinburgh

Nigel Topham
University of Edinburgh



Background - How are practical exercises done in computer architecture classes?

Two types of teaching tools:

1. Low Level 

- focusing on HW microarchitectural implementation (e.g. using Chisel Or 
Verilog).

2. High Level

- software simulation, which provides a good overview of the instruction 
execution. 

- architectural simulators such as gem5 or ChampSim.



How it’s done in Edinburgh in the Computer Architecture and Design class 
(CARD)?

The computer lab has around 60 PYNQ-Z2 
FPGAs.

We have 5-stage, in-order RISC-V core 
written in Verilog.

In the practical exercises, students 
implemplement different components of 
the RISC-V core (e.g. ALU, regfile, pipeline 
bypassing).

In the advanced tasks, students can 
choose an arbitrary way of optimising the 
core.



How can we improve it?

To measure the performance gain, students are limited to simulating the 
behaviour in software simulation. 

- limited number of instructions that can be executed.

By connecting the core implemented in HW to a debugger, students can run 
more advanced benchmarks and measure the performance more accurately 
on real HW.

+ Opportunity to examine the insides of the core during execution
+ Opportunity to measure performance.

… Insert NewCARD



System Design ● GDB runs on a regular PC and allows the 
student to:
○ Load an arbitrary program to memory.
○ Set breakpoints.
○ Run the program.
○ View and modify the state of the PC, registers 

and memory.
● GDB Connects to a Remote GDB Server, which 

acts as a front-end to the RISC-V core.
● Remote Server knows how to communicate 

with RISC-V core.
● Why is Remote Server not on the PC, but on the 

PS?
○ We’re taking advantage of the AXI protocol.



PS/PL Interface

Hardware interface (AXI)

Far more lightweight than JTAG with RISC-V 
debug specifications implemented.

a. Run/halt core
b. Instruction Single Step
c. Read/Write Registers
d. Read/Write PC
e. Read/Write Instruction memory
f. Read/Write Data memory

+ EBREAK instruction

Software driver

Python Overlay (does a lot of the magic for you)

● Students supply a bitstream and hardware 
description file (from Vivado) 

● The Python Overlay programs the board and 
creates the driver for you. 



Semi-hosting (What we do when there’s no OS on the RISC-V)

● A way of simulating 
system calls on 
bare-metal cores. 

● Uses the EBREAK 
instruction with special 
padding to indicate a 
semi-hosting call instead 
of regular breakpoint.

● Handled by the Remote 
Server. 

● It’s slow. But still good 
enough. (~26ms to print a 
20 char long message)

Single Character Print Comparison 



User Setup



What can the students do?

Mini-studies in real hardware
- E.g. compare performance of 

different core implementations

Experiment in GDB

The performance gain of adding pipeline forwarding on 
1,000,000 iterations of the Dhrystone benchmark.



Summary

NewCARD is a vertically integrated teaching tool which integrates both low-level 
HW implementation opportunities for students which high-level, experimentation 
and benchmarking framework.

It uses the GDB interface with Remote Server to debug and benchmark the RISC-V 
core.

To our best knowledge, it is the only tool which provides a high-level instruction 
execution overview on a core implemented in real hardware.



Thank you for your attention?
Questions and suggestions are much appreciated :)


