NewCARD: A Vertically Integrated
Teaching Tool for Microarchitecture

Méaria Durackova Nigel Topham
University of Edinburgh University of Edinburgh

Background - How are practical exercises done in computer architecture classes?

Two types of teaching tools:
1. Low Level

- focusing on HW microarchitectural implementation (e.g. using Chisel Or
Verilog).

2. High Level

- software simulation, which provides a good overview of the instruction
execution.

- architectural simulators such as gem5 or ChampSim.

How it's done in Edinburgh in the Computer Architecture and Design class
(CARD)?

The computer lab has around 60 PYNQ-Z2
FPGAs.

We have 5-stage, in-order RISC-V core
written in Verilog.

In the practical exercises, students
implemplement different components of
the RISC-V core (e.g. ALU, redfile, pipeline
bypassing).

In the advanced tasks, students can
choose an arbitrary way of optimising the
core.

How can we improve it?

To measure the performance gain, students are limited to simulating the
behaviour in software simulation.

- limited number of instructions that can be executed.

By connecting the core implemented in HW to a debugger, students can run
more advanced benchmarks and measure the performance more accurately
on real HW.

+ Opportunity to examine the insides of the core during execution
+ Opportunity to measure performance.

... Insert NewCARD

System Design e GDB runs on a regular PC and allows the

student to:
o Load an arbitrary program to memory.
o Set breakpoints.
o Run the program.
o View and modify the state of the PC, registers

.....................

GDB

....................

GDB Remote Protocol

:__._._..._._._{_T_Sf_'?f!?.)_..._._._.. """"""""""""" FPGA | and JNISIIeLys
¥ i [Quey parer e GDB Connects to a Remote GDB Server, which
1 Seminosting Handler, acts as a front-end to the RISC-V core.
el P e Remote Server knows how to communicate
i . [AXiManager || with RISC-V core.
| Ax.po.oc. g e Why is Remote Server not on the PC, but on the
i T i PS?

Rscvewe || [EREoREe o We're taking advantage of the AXI protocol.

PS/PL Interface

Hardware interface (AXI)

Far more lightweight than JTAG with RISC-V
debug specifications implemented.

a Run/halt core

b Instruction Single Step

c. Read/Write Registers

d. Read/Write PC

e Read/Write Instruction memory
f. Read/Write Data memory

B

+ EBREAK instruction

Software driver
Python Overlay (does a lot of the magic for you)

e Students supply a bitstream and hardware
description file (from Vivado)

e The Python Overlay programs the board and
creates the driver for you.

PS Manager
— —| cpucontrols (— | riwcontrols —| address — data_in — output
PL Subordinate

Write
Read

def write_DCCM(self, addr, data):
self.halt_core()

self.rv32_ip.write(0x0008, addr)
self.rv32_ip.write(0x000c, data)
self.rv32_ip.write(0x0004, 0b10000000)

Semi-hosting (What we do when there’s no OS on the RISC-V)

2: Cool! | see you've halted
because you need me to
simulate a system call, tell me
more about it.

4: Will do! The user will
never suspect that it
was me who did all the

1: Hey! I've
halted!

3: | need you to print
a null teminated
string starting at
address 0x1400.

Single Character Print Comparison

hard work!
Continue doing your Debugger fanjet
thing!
5: I'm resuming
execution 3)
| time[microseconds]

arm cortex 9/c¢ 0.32040
arm cortex 9 / python 7.0792
RISC-V (semi-hosted) / ¢ 1362.3

A way of simulating
system calls on
bare-metal cores.

Uses the EBREAK
instruction with special
padding to indicate a
semi-hosting call instead
of regular breakpoint.
Handled by the Remote
Server.

It's slow. But still good
enough. (~26ms to print a
20 char long message)

run GDB commands ssh into the FPGA PS
start remote server
read benchmark output

What can the students do?

Mini-studies in real hardware
- E.g. compare performance of
different core implementations

| time [s] | DMIPS/MHz | normalised

baseline (no data forwarding) | 10.25 0.9255 |
data forwarding 7.484 1.267 0.7301

The performance gain of adding pipeline forwarding on
1,000,000 iterations of the Dhrystone benchmark.

Experiment in GDB

(gdb) break *0xal®
Breakpoint 1 at 8xal®
(gdb) continue
Continuing.

Breakpoint 1, 0x00000al1l0 in sh_writei ()
(gdb) i r $pc

pc Oxall ©xall <sh_writei>

(gdb) i r $sp

sp Ox0e oxe

(gdb) i r $ra

ra 0x19c 0x19c <main+316>

(gdb) x/4i $pc

=> 0xall <sh_writei>: mv al,a0d
Oxal4 <sh_writei+4>: 11 ao, 64

0xal8 <sh_writei+8>: nop

Oxalc <sh_writei+12>: nop

Summary

NewCARD is a vertically integrated teaching tool which integrates both low-level
HW implementation opportunities for students which high-level, experimentation
and benchmarking framework.

It uses the GDB interface with Remote Server to debug and benchmark the RISC-V
core.

To our best knowledge, it is the only tool which provides a high-level instruction
execution overview on a core implemented in real hardware.

Thank you for your attention?

Questions and suggestions are much appreciated :)

