
Composing Microservices and Serverless for Load Resilience

Microservices architecture has become widely popular for modern application develop-
ment due to its ability to break down applications into smaller, independent services, making
development, deployment, and maintenance more manageable. However, a major challenge
faced by microservices is efficiently scaling compute resources to handle fluctuating and un-
expected spikes in traffic. Typically deployed as containers within virtual machines (VMs),
microservices struggle to scale resources efficiently. At present, companies often allocate
more resources than necessary to their microservice systems in anticipation of unexpected
increases in demand, resulting in excess costs. However, these resources typically remain
unused during periods of low demand.

Currently, two distinct strategies are employed to address microservices scalability:
proactive and reactive scaling. Proactive scaling involves preemptively allocating resources
based on anticipated demand, while reactive scaling adjusts resources dynamically in re-
sponse to real-time changes in demand or performance metrics. While proactive scaling
attempts to manage regular load fluctuations based on forecasts, it often fails to address
sudden increases in traffic due to their unpredictable nature. In contrast, reactive scaling
can accommodate unforeseen traffic surges but is hindered by the time it takes for scaling
events to occur in microservice frameworks, typically requiring several seconds to complete,
or even longer if new virtual machines need to be initiated.

Recognizing the challenges, serverless computing emerges as a promising solution due
to its elasticity and ultra-fast startup times. With serverless computing, users only pay for
the actual resources used, and cloud providers manage resource allocation, provisioning, and
scaling on-demand. By leveraging the above insight, we propose Hydra, a hybrid architecture
that combines VM-based microservices with serverless computing. Under normal load,
Hydra operates online applications as VM-based microservices, as commonly done in current
deployments. During load spikes, Hydra seamlessly incorporates serverless components to
handle excess load while launching new microservice instances in the background.

Our evaluation demonstrates that Hydra significantly reduces peak tail latency by 62.4%
compared to Kubernetes auto-scaling mechanisms, with only a minimal 2.3% increase in
cost. This underscores Hydra’s effectiveness in achieving load resilience cost-efficiently
within modern online service architectures.


