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Collaborative Machine Learning Systems

Collaborative machine learning = Server coordinating
(CML) systems were proposed to the iraining of @
collaboratively train deep learning global Al mode

models using multiple devices and a

server. / f \\
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Federated Learning (FL)

oK * Problem:

BT The server resources are only
M employed when the local
models are aggregated and
remains idle for the remaining
time.
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Federated Learning (FL)
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Federated Learning (FL)
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Federated Learning (FL)
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Split Learning (SL)
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Split Learning (SL)
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Split Learning (SL)
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Split Learning (SL)
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Split Learning (SL)
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Split Federated Learning (SFL)

Main Server
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A hybrid of FL and SL.

* Problem:

The server Is required to wait
while the devices train the
model and transfer data, and
ViCe versa.
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Split Federated Learning (SFL)
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Split Federated Learning (SFL)
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Resources Under-Utilisation Challenges

1. The server and devices cannot perform tasks simultaneously
as they depend on each other.

2. There iIs a large communication overhead between the server
and devices to enable collaboration.

3. The presence of stragglers when heterogeneous devices
participate in training results in more wait times for faster
devices.
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PipelLearn
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micro-batches.
. . . SEIVEr-SIAE COMIP. - = = == === x s s e e et e e
- Parallelise device-side —
computation, server- s T
Slde Computatlon and IO OB T s e e s s
communication. by R
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.
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PipelLearn

Server_side Comp_ ................................. ; I

Uploading: coisiissiissied = N

* Split the model across
server and devices.

« Split each mini-batch
of data to several
micro-batches.

DWWl Oa I s S e S S e

fC

Device-Side Comp.m— e e e e e e e e e e e e e e

] ] ] SEIVEI-Side COMP. - - ==« = === = == = s e ettt ettt ettt et
 Parallelise device-side ——
. DO Y e e e
computation, server- .
Slde Computatlon and Downloadmg .................................................................................
communication. by R
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

<& University of

WWW.St'andreWS.aC.Uk ’iﬁ St Andrews




PipelLearn

g b*
Server-Side Comp.- ===« == =rxerrrrmmrreeeeiiiaeeen : T
. Uploading: coisiissiissied = = ol .................................
 Split the model across | ; S 4
. Downloading:sssssssssmmsm s B e
server and devices. P
Device-Side Comp..— e e e e e e e e e e e e e e

« Split each mini-batch
of data to several
micro-batches.

] ] ] SEIVEI-Side COMP. - - ==« = === = == = s e ettt ettt ettt et
 Parallelise device-side ——
. DO Y e e e
computation, server- .
Slde Computatlon and Downloadmg .................................................................................
communication. by R
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

<& University of

WWW.St'andreWS.aC.Uk ’iﬁ St Andrews




PipelLearn

I b*
Server-Side Comp.- -« - s vrerrerrariitiiiiiiin . ................................
. Uploading: ccoosiisinssnid r = frooern ey .................................
* Split the model across o ; N
server and devices. = Dreebedhgi, f .............................. ; ... e
S It each mlnl batch Device-SideComp_‘ 5 S oo a e e e e e e e e e e e e e e e e e e e e e e e e i
ofpc;ata to several (a) Split Federated Learning
micro-batches.
. . . SEIVEr-Side COMIP. - =« =+ =+ = v s et s et ettt e e
- Parallelise device-side —
cpmputatlon, server- 8 oA
Slde Computatlon and IO OB T s e e s s
communication. by R
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

<& University of

WWW.St'andreWS.aC.Uk ’iﬁ St Andrews




PipelLearn
Server-Side Comp. -— ':>“

] Uploading: :ccvvseeevvsanef e
° Spllt the mOdeI acrOSS Downloadlng.................E ............................... 1 d > ................
server and devices. el FooL b 3
. . evice-Side Comp.| e e ]
* Split each mini-batch |
of data to several (a) Split Federated Learning
micro-batches.
. . . SEIVEr-SIAE COMIP. - = = == === x s s e e et e e
« Parallelise device-side —
. DO Y e e e
computation, server- |
Slde Computatlon and DOl O N e e e s
communication. by R
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

& University of

WWW.St'andreWS.aC.Uk ?&ﬁ St Andrews




PipelLearn
Server-Side Comp. -— ':>“

] Uploading: :ccvvseeevvsanef e
° Spllt the mOdeI acrOSS Downloadlng.................E ............................... 1 d > ................
server and devices. el N oy N
. . evice-Side Comp. e
* Split each mini-batch |
of data to several (a) Split Federated Learning
micro-batches.
. . . Server-Side Comp_ .................................................................................
- Parallelise device-side e
Clomputatlon’ server— p | g ................................................................................
Slde Computatlon and Downloading. .. ... A easansamammaasassns s 0
communication. Device-Side Comp. 4 A BB A AR
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

& University of

WWW.St'andreWS.aC.Uk ?&ﬁ St Andrews




PipelLearn
Server-Side Comp. -— ':>“

] Uploading: :ccvvseeevvsanef e
° Spllt the mOdeI acrOSS Downloadlng.................E ............................... 1 d > ................
server and devices. el N oy N
. . evice-Side Comp.| B e ]
) Sp|lt each mini-batch | (a) Split Federated Learnin
of data to several P J
micro-batches.
. . . Server-Side Comp, .................................................................................
- Parallelise device-side _ra "
Computatlon’ Server— p .g ........ D ecccccceetetttetet sttt sttt sttt e seseee e e e et
Slde COmpUtatIOn and Downloadmg.....f.c....g.....f.c ...............................................................
commu n|Cat| on. Device-Side Comp. - BIERD - - ¢ e nennnennennneneenneennnsnsneennenneenneennnnnens
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

& University of

WWW.St'andreWS.aC.Uk ?&ﬁ St Andrews




PipelLearn
Server-Side Comp. -— ':>“

] Uploading: :ccvvseeevvsanef R
° Spllt the mOdeI acrOSS Downloadlng.................E ............. ................. 1 d > ................
server and devices. e oo ;¥ N
_ . evice-Side Comp. I
) Sp|lt each mini-batch | (a) Split Federated Learnin
of data to several g J
micro-batches. e i,
- Parallelise device-side v Ty
COmpUtatIOn, Server_ Uploadmg .......... , ..................................................
side Computa’uon and Downloading. ......... bereennens P
communication. TR R L IR N
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

& University of

WWW.St'andreWS.aC.Uk ?&ﬁ St Andrews




PipelLearn
Server-Side Comp. -— ':>“

] Uploading: :ccvvseeevvsanef R
° Spllt the mOdeI acrOSS Downloadlng.................E ............. ................. 1 d > ................
server and devices. el gL . w 3
: . evice-Side Comp.| . e |
* Split each mini-batch |
of data to several (a) Split Federated Learning
micro-batches. e
. . . Server-Side Comp.:««cvevvrrreerinnnng fl' —;1' N fz ;lr’ ........................................
- Parallelise device-side | N o,
CompUtathn, Server_ Uploadmg..........g' . o <R
side Computa’uon and Downloading.......... RRTTIPRN R RPPRRRRE : \ ........................................
communication. Device-Side Comp. ! N s f'”j L
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

& University of

WWW.St'andreWS.aC.Uk ?&ﬁ St Andrews




PipelLearn
Server-Side Comp. -— ':>“

] Uploading: :ccvvseeevvsanef R
° Spllt the mOdeI acrOSS Downloadlng.................E ............. ................. 1 d > ................
server and devices. e _ - S
: . evice-Side Comp. | ek e |
* Split each mini-batch |
of data to several (a) Split Federated Learning
micro-batches. s
. . . Server-SideComp_.....................jfl' —h.ﬁ—l‘g‘.fg L ..............................
- Parallelise device-side | ok o B RS
Clomputatlon’ server_ Uploadlng .......... . : , . . s <
side computa’uon and Downloading. . ... ..... TOT—. SR— P
communication. Device-Side Comp.; A ; L f"'j A
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

& University of

WWW.St'andreWS.aC.Uk ?&ﬁ St Andrews




PipelLearn
Server-Side Comp. -— ':>“

] Uploading: :ccvvseeevvsanef e
° Spllt the mOdeI acrOSS Downloadlng.................E ............................... 1 d > ................
server and devices. e N S S
. . evice-Side Comp. ek
* Split each mini-batch |
of data to several (a) Split Federated Learning
micro-batches. g B g B e gm ge
. . . S -Side C AT L :l, 2 :2, ”.‘"",', N :\. ....................
- Parallelise device-side T e mE Ll BT
computation, server- e P —m— e L
S|de COmpUt_athn and Downloading.......... .......... .......... , > c \/> c \/> : \/ _____ e
communication. Dhavice-Sie Comp mm sl sl il il il sl
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

& University of

WWW.St'andreWS.aC.Uk ?&ﬁ St Andrews




PipelLearn
Server-Side Comp. -— ':>“

] Uploading: :ccvvseeevvsanef e
° Spllt the mOdeI acrOSS Downloadlng.................E ............................... 1 d > ................
server and devices. el Fooo ¥ N
_ . evice-Side Comp.. p e |
) Sp|lt each mini-batch | (a) Split Federated Learnin
of data to several g J
micro-batches. R W B £ v Sy b
. o Server-ice Comp. SRR =) b
- Parallelise device-side o 2T [ el T
Cpmputa‘“ On’ server— ploading:«.---.... 4 L 4 14 dl \, d2 L .. d .. .. dN ..............
Slde Computatlon and Downloadlngfcfcf64 fc [>; - > - > - >bc .....
commu nICatI on. Device-Side Comp. ﬁl“ ! l{ 1 i [l - >I 2 I>I >r i >
* All devices are (b) PipeLearn

training in parallel. _ o | . .
Figure 1. A training iteration for split federated learning and PipelLearn,

where f, b, u and d represent forward pass, backward pass, upload and
download, respectively.

& University of

www.st-andrews.ac.uk & St Andrews




Experiment: Training Efficiency
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Figure 2. Training time per epoch for FL, SFL and PipeLearn under different network conditions.

PipeLearn accelerates the training process by up to 27.6x.
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Experiment: Idle Time
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Figure 3. Idle time per epoch on the server and devices in FL, SFL and PipeLearn under different
network conditions.

PipeLearnreduces idle time by up to 58.1x.

& University of
www.st-andrews.ac.uk St Andrews




Experiment: Model Accuracy

Technique CIFAR-10 ' MNIST - SVHN '
VGG5  ResNet-18  “ORCNES | VGGS  ResNet18 0SS0 | VGG5  ResNet18  VOogoh et
FL 79.95 83.15 78.55 96.95 98.05 97 90.75 94.02 90.77
SFL 79.55 82.35 76.85 97.05 98 96.45 91 93.78 90.81
PipeLearn & 4G 79.15 83.15 77.85 97.45 98 97.2 90.83 93.62 90.6
PipeLearn & 4G+ 784 82.85 /7.7 97.6 97.95 97.45 91.25 93.67 90.63
PipeLearn & WiFi 78.65 83.3 77.5 97.35 97.85 96.75 90.9 93.77 90.52

Table 1. Model accuracy of VGG5 and ResNet18 on the test dataset using FL, SFL and PipelLearn,
under different network conditions.

PipeLearn achieves (near) similar model accuracy.
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Resources Under-Utilisation Challenges

1. The server and devices cannot perform tasks simultaneously as
they depend on each other. PipelLearn adjusts training pipeline to
make them work simultaneously.

2. There is a large communication overhead between the server and

devices to enable collaboration. PipelLearn overlaps computation
with communication.

3. The presence of stragglers when heterogeneous devices
participate In training results in more wait times for faster devices.
Future Work.

&2 University of
= .

WWW.St'andreWS.aC.U_k &> St Andrews



Concluding Remarks

« Z. Zhang, P. Rodgers, P. Kilpatrick, I. Spence and B. Varghese,
"PipeLearn: Pipeline Parallelism for Collaborative Machine
Learning," IEEE Transactions on Parallel and Distributed
Systems, 2022 [Under Revision].

* One US patent filed with the sponsor of this research, Rakuten

Mobile, Inc., Japan.
Rakuten
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