
PipeLearn: Pipeline Parallelism for 
Collaborative Machine Learning Systems

Zihan Zhang and Blesson Varghese

zz66@st-andrews.ac.uk

Seventh Annual UK System Research Challenges Workshop

mailto:zz66@st-andrews.ac.uk


Collaborative Machine Learning Systems

Collaborative machine learning 
(CML) systems were proposed to 
collaboratively train deep learning 
models using multiple devices and a 
server. 

Three popular techniques:

• Federated Learning

• Split Learning

• Split Federated Learning



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Learning (SL)

• Problem:

Only one device or the server 
will utilise its resources while 
the other devices or server are 
idle.



Split Federated Learning (SFL)

A hybrid of FL and SL.

• Problem:

The server is required to wait 
while the devices train the 
model and transfer data, and 
vice versa.



Split Federated Learning (SFL)

A hybrid of FL and SL.

• Problem:

The server is required to wait 
while the devices train the 
model and transfer data, and 
vice versa.



Split Federated Learning (SFL)

A hybrid of FL and SL.

• Problem:

The server is required to wait 
while the devices train the 
model and transfer data, and 
vice versa.



Resources Under-Utilisation Challenges

1. The server and devices cannot perform tasks simultaneously 
as they depend on each other.

2. There is a large communication overhead between the server 
and devices to enable collaboration.

3. The presence of stragglers when heterogeneous devices 
participate in training results in more wait times for faster 
devices.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.



Experiment: Training Efficiency

(a) VGG5 (b) ResNet18

Figure 2. Training time per epoch for FL, SFL and PipeLearn under different network conditions.

PipeLearn accelerates the training process by up to 27.6x.



Experiment: Idle Time

(a) VGG5 (b) ResNet18

Figure 3. Idle time per epoch on the server and devices in FL, SFL and PipeLearn under different 

network conditions.

PipeLearn reduces idle time by up to 58.1x.



Experiment: Model Accuracy

Table 1. Model accuracy of VGG5 and ResNet18 on the test dataset using FL, SFL and PipeLearn, 

under different network conditions.

PipeLearn achieves (near) similar model accuracy.



Resources Under-Utilisation Challenges

1. The server and devices cannot perform tasks simultaneously as 
they depend on each other. PipeLearn adjusts training pipeline to 
make them work simultaneously.

2. There is a large communication overhead between the server and 
devices to enable collaboration. PipeLearn overlaps computation 
with communication.

3. The presence of stragglers when heterogeneous devices 
participate in training results in more wait times for faster devices.
Future Work.



Concluding Remarks

• Z. Zhang, P. Rodgers, P. Kilpatrick, I. Spence and B. Varghese, 
"PipeLearn: Pipeline Parallelism for Collaborative Machine 
Learning," IEEE Transactions on Parallel and Distributed 
Systems, 2022 [Under Revision]. 

• One US patent filed with the sponsor of this research, Rakuten 
Mobile, Inc., Japan.




	Slide 1: PipeLearn: Pipeline Parallelism for Collaborative Machine Learning Systems
	Slide 2: Collaborative Machine Learning Systems
	Slide 3: Federated Learning (FL)
	Slide 4: Federated Learning (FL)
	Slide 5: Federated Learning (FL)
	Slide 6: Federated Learning (FL)
	Slide 7: Federated Learning (FL)
	Slide 8: Split Learning (SL)
	Slide 9: Split Learning (SL)
	Slide 10: Split Learning (SL)
	Slide 11: Split Learning (SL)
	Slide 12: Split Learning (SL)
	Slide 13: Split Learning (SL)
	Slide 14: Split Federated Learning (SFL)
	Slide 15: Split Federated Learning (SFL)
	Slide 16: Split Federated Learning (SFL)
	Slide 17: Resources Under-Utilisation Challenges
	Slide 18: PipeLearn
	Slide 19: PipeLearn
	Slide 20: PipeLearn
	Slide 21: PipeLearn
	Slide 22: PipeLearn
	Slide 23: PipeLearn
	Slide 24: PipeLearn
	Slide 25: PipeLearn
	Slide 26: PipeLearn
	Slide 27: PipeLearn
	Slide 28: PipeLearn
	Slide 29: PipeLearn
	Slide 30: PipeLearn
	Slide 31: PipeLearn
	Slide 32: Experiment: Training Efficiency
	Slide 33: Experiment: Idle Time
	Slide 34: Experiment: Model Accuracy
	Slide 35: Resources Under-Utilisation Challenges
	Slide 36: Concluding Remarks
	Slide 37

