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Collaborative Machine Learning Systems

Collaborative machine learning 
(CML) systems were proposed to 
collaboratively train deep learning 
models using multiple devices and a 
server. 

Three popular techniques:

• Federated Learning

• Split Learning

• Split Federated Learning



Federated Learning (FL)

• Problem:

The server resources are only 
employed when the local 
models are aggregated and 
remains idle for the remaining 
time.
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Resources Under-Utilisation Challenges

1. The server and devices cannot perform tasks simultaneously 
as they depend on each other.

2. There is a large communication overhead between the server 
and devices to enable collaboration.

3. The presence of stragglers when heterogeneous devices 
participate in training results in more wait times for faster 
devices.



PipeLearn

• Split the model across 
server and devices.

• Split each mini-batch 
of data to several 
micro-batches.

• Parallelise device-side 
computation, server-
side computation and 
communication.

• All devices are 
training in parallel.

(a) Split Federated Learning

(b) PipeLearn

Figure 1. A training iteration for split federated learning and PipeLearn, 

where f, b, u and d represent forward pass, backward pass, upload and 

download, respectively.
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Experiment: Training Efficiency

(a) VGG5 (b) ResNet18

Figure 2. Training time per epoch for FL, SFL and PipeLearn under different network conditions.

PipeLearn accelerates the training process by up to 27.6x.



Experiment: Idle Time

(a) VGG5 (b) ResNet18

Figure 3. Idle time per epoch on the server and devices in FL, SFL and PipeLearn under different 

network conditions.

PipeLearn reduces idle time by up to 58.1x.



Experiment: Model Accuracy

Table 1. Model accuracy of VGG5 and ResNet18 on the test dataset using FL, SFL and PipeLearn, 

under different network conditions.

PipeLearn achieves (near) similar model accuracy.



Resources Under-Utilisation Challenges

1. The server and devices cannot perform tasks simultaneously as 
they depend on each other. PipeLearn adjusts training pipeline to 
make them work simultaneously.

2. There is a large communication overhead between the server and 
devices to enable collaboration. PipeLearn overlaps computation 
with communication.

3. The presence of stragglers when heterogeneous devices 
participate in training results in more wait times for faster devices.
Future Work.



Concluding Remarks

• Z. Zhang, P. Rodgers, P. Kilpatrick, I. Spence and B. Varghese, 
"PipeLearn: Pipeline Parallelism for Collaborative Machine 
Learning," IEEE Transactions on Parallel and Distributed 
Systems, 2022 [Under Revision]. 

• One US patent filed with the sponsor of this research, Rakuten 
Mobile, Inc., Japan.
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