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Federated Learning (FL)

Cross-device FL ¥ Cross-Silo FL

» Data owned by end users » Data own by individual

« Smart phones and loT organizations.
devices « Banks and hospitals

* Thousands to millions e Tens to hundreds
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A Typical FL system in Smart Home
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Practical Challenges

« Computation « Communication
* MobileNet — 8 hours training * VGG11 - 25 GB data
of a Raspberry Pi per round communication of 100 rounds
on CIFAR-10 (10 K samples) per device on CIFAR-10 (10 K
samples)

FL can not be directly applied on IoT devices.

Gao, Y., Kim, M., Abuadbba, S., Kim, Y., Thapa, C., Kim, K., Camtepe, S.A., Kim, H. and Nepal, S., 2020. End-to-
end evaluation of federated learning and split learning for internet of things. arXiv preprint arXiv:2003.13376.
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-based FL (DPFL)
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FedAdapt: Adaptive
Ofﬂoad|ng fOI’ IOT Clients
Devices in FL

Q1: To what extent, can DPFL accelerate
training?

Q2: How to decide the offloading point for
various devices?

Wu, D., Ullah, R., Harvey, P., Kilpatrick, P., Spence, |. and Varghese, B., 2022. Fedadapt: Adaptive
offloading for iot devices in federated learning. IEEE Internet of Things Journal, 9(21), pp.20889-20901.
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Communication —

1400 HHE Communication 1500 HHE Communication
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31000 9)
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« Communication latency is a new =i &2 3 750
bottleneck in DPFL as the £ 600 -
intermediate results need to be B 400 79.59% ' 500 84.08%
. = =
transferred for each batch of training - 250 M
samples.
Wi-Fi 4G 3G Wi-Fi 4G 3G
(50/50 Mbps) (10/42 Mbps) (3/6 Mbps) (50/50 Mbps) (10/42 Mbps) (3/6 Mbps)
. . . Bandwidth Bandwidth
« The communication requires up to
60% of the overall training time under (a) VGG11 (b) ResNet9
Wi-Fi conditions and around 95% for
3G bandwidth. Fig. 1: Computation and communication latency in DPFL

training under different network bandwidths. Numerical value
above the bars is the percentage of communication latency.
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ActionFed: A
Communication
Efficient DNN DPFL
Approach

* Pre-trained knowledge (eliminating
the need for gradient)

» Replay Buffer (reducing the
communication frequency of activation)

« Quantization (Intermediate data
compression)
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Wu, D., Ullah, R., Rodgers, P., Kilpatrick, P., Spence, |. and Varghese, B., 2023. Communication Efficient

DNN Partitioning-based Federated Learning. arXiv preprint arXiv:2304.05495.
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Testbed

One edge server (Laptop)

Router

* Five loT devices: 4 Raspberry Pis and Ed
. ge
1 Jetson Xavier cariun

(Laptop)
* We manually lower down the
maximum CPU frequency to 1.2GHz
and 0.7Ghz. “

« TC commands are used to adjust the _
network bandwidths. Raspberry Pi 4 Jetson Xavier
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Experiment Results

1646 1654
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Devices

A total speed up of 2.35x for one round of FL training
considering the heterogeneity of devices.
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Experiment Results

Zoom in,

TABLE VI: Communication cost for one training round. ,\150 ——e oL A BT ‘°°’°',if°?’°
Communication cost 8 Sl 10 "
s /
Methods VGGII ResNetd 3400 - LOL g
FL 128 GB 035GB = D e
SplitFed 3.05 GB 3.05 GB 2 [ aonRe F
LGL 1.52 GB 1.52 GB L g (5,
FedGKT 1.53 GB 1.53 GB 5 iy !
ActionFed w/o buffer 0.39 GB 0.39 GB E ,;," e
ActionFed w buffer 0 GB 0 GB 8 ooy
. st
20 40 60 80

Test accuracy (%)

(b) VGGI11 on CIFAR-10

ActionFed can reduce the communication cost by up to 15.77x compared to classical DPFL and
can achieve the same learning performance with much less communication cost.
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Next steps

* To further accelerate the device-side training, we will investigate
the advantages of applying on-device ML methods like network
slimming.

* A comprehensive framework that facilitates federated learning
at the edge will be developed by integrating the techniques.
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