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Throughput and Result Freshness Matter

2

…

High-throughput
processing

Low-latency
results

Data-intensive
system

Facebook Insights: 12 GB generated content/s < 10 sec latency
Feedzai: 24M credit card transactions/user  < 10 ms latency
Uber: PB data/day < 1 ms latency
NovaSparks: 150M trade options/s < 1 ms latency
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Distributed Stream Processing Engines Face Challenges

Pros
> Complex analytics scalability
> Fault-tolerance

Cons
> Cross-process and network overheads
> Unpredictable latency guarantees
> Inefficient execution strategies
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COST of Distributed Execution
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implementation
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Highly-Parallel Scale-up Architectures in Data Centers
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PCIe Bus

DMA

SSDSSD

high-speed
networking

fast storage

E Are scale-up systems a practical alternative for scalability and fault tolerance?
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High-Performance Streaming and Fault-Tolerance is Hard

Hardware-efficient 
single-core 
execution

Multi-core 
parallelization

Reliable stream 
processing

Parallel window 
execution strategy

Computation 
sharing over 

windows

Fault-tolerant 
window operators

Scale-up Stream Processing Engine
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Hardware-efficient 
single-core 
execution

Computation 
sharing over 

windows

Scale-up Stream Processing Engine
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Hardware-efficient 
single-core 
execution

Multi-core 
parallelization

Parallel window 
execution strategy

Computation 
sharing over 

windows

Scale-up Stream Processing Engine

HammerSlide

SlideSide
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Scaling Window Operators on Multi-Core Processors

Performance ParallelismIncremental
Computation
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Tension Between Parallelism & Incremental Computation
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Existing System Implement Ad-Hoc Solutions

Performance ParallelismIncremental
Computation
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Existing System Implement Ad-Hoc Solutions

Conflicting Objectives

Performance

Incremental
Computation

Parallelism
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Let’s Double the Window Slide!
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Let’s Double the Window Slide!
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Two Sides of the Same Coin

Incremental Computation

Panes
+

Sashes

No data dependencies

Data-dependent computation

Partial Aggregates 

Parallel Computation
-

+

E How to partition streams into intermediate steps?
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Create a Model That Splits Aggregation Into Steps

Sequential

Parallel

Incremental

Design choice
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LightSaber: Combine Parallelism With Incremental Execution
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Parallel Aggregation Tree: Multi-level Window Aggregation
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No best approach

19

How to Generate Efficient Code for Incremental Execution

Incremental Algorithms
SoE

SlickDeque
Two-Stacks

SlideSide ?Pane 
Merge

Generate workload-
& query- specific code
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General Aggregation Graph: Capture Low-Level 
Dependencies

int leafIter = 0;
for (auto &t: input) {  
if (leafIter == WINDOW_SIZE) {    
for (int i = 0;i<WINDOW_SIZE;++i)
s[i+1] = min(ss[i], 

l[WINDOW_SIZE-1-i]);
leafIter = 0; ps = INT_MAX; 

}  
ps = min(ps, t);  
emit_result(min(ps, 

ss[WINDOW_SIZE-leafIter]));  
leafIter++;

}

> Aggregation functions
> Window Types
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Efficient Multi-core Execution
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Hardware-efficient 
single-core 
execution

Multi-core 
parallelization

Reliable stream 
processing

Parallel window 
execution strategy

Computation 
sharing over 

windows

Fault-tolerant 
window operators

Scale-up Stream Processing Engine
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Scale-up Engines Have Limited Adoption due to Lack of Built-
in Fault-Tolerance

persist incoming 
streams

1
persist operators 

with state
2

σ α

Selection Aggregation

> Fault-tolerance requires persisting data from queries
> Persistence is offloaded to external systems
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Kafka Ingestion Trails Scale-up Performance

scale-out and increase 
maintenance cost

220

78800

Single-node fault-tolerance without compromising performance!
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Key Idea: Reduce Required Disk I/O Bandwidth

SSD I/O bandwidth
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Scabbard: Reduce Required Disk I/O Bandwidth
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storage
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Single-Node Fault-Tolerant Stream Processing

> Co-optimize persistence and query execution
> JIT compile compression operators at runtime
> Use remote storage (e.g., EBS) and high-speed networking (RDMA)

SCABBARD
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Hardware-efficient 
single-core 
execution

Multi-core 
parallelization

Reliable stream 
processing

Parallel window 
execution strategy

Computation 
sharing over 

windows

Fault-tolerant 
window operators

Scale-up Stream Processing Engine
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George Theodorakis  
george.theodorakis@neo4j.com

Thank you! 
Questions?

Summary

https://github.com/lsds/LightSaber

Single-node SPEs provide a practical alternative for scalable
and reliable stream processing!

https://github.com/lsds/LightSaber

