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Throughput and Result Freshness Matter

Q

ACE Data-intensive Low-latency
system results
High-throughput
processing

Facebook Insights: 12 GB generated content/s < 10 sec latency
24M credit card transactions/user < 10 ms latency
PB data/day

< 1 ms latency
NovaSparks: 150M trade options/s

< 1 ms latency
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Distributed Stream Processing Engines Face Challenges

> Complex analytics scalability
> Fault-tolerance

Cons
> Cross-process and network overheads

> Unpredictable latency guarantees
> |nefficient execution strategies
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COST of Distributed Execution

Yahoo Streaming Benchmark
Flink Spark
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Highly-Parallel Scale-up Architectures in Data Centers
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* Are scale-up systems a practical alternative for scalability and fault tolerance?
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High-Performance Streaming and Fault-Tolerance is Hard

Scale-up Stream Processing Engine

Hardware-efficient Multi-core Reliable stream
single-core parallelization processing
execution
Computation Parallel window Fault-tolerant
sharing over execution strategy window operators
windows
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Scale-up Stream Processing Engine

<//*”/////////////

Hardware-efficient
single-core
execution

Computation
sharing over
windows
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Scale-up Stream Processing Engine
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Hardware-efficient Multi-core
single-core parallelization
execution
Computation Parallel window
sharing over execution strategy
windows
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Scaling Window Operators on Multi-Core Processors

Incremental _
Performance — Computation #]: Parallelism
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Tension Between Parallelism & Incremental Computation

Tumbling Windows Sliding Windows
Nothing to optimize Parallel Execution Incremental Execution
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Existing System Implement Ad-Hoc Solutions

Incremental _
Performance — Computation #]: Parallelism
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Existing System Implement Ad-Hoc Solutions

Conflicting Objectives
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Let’s Double the Window Slide!
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Let’s Double the Window Slide!
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Two Sides of the Same Coin

Partial Aggregates 1
Incremental Computation
Sashes -
Data-dependent computation
Panes ) No data dependencies
R Parallel Computation
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*- How to partition streams into intermediate steps?
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Create a Model That Splits Aggregation Into Steps

Sequential Design choice
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LightSaber: Combine Parallelism With Incremental Execution

arallel
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Parallel Aggregation Tree: Multi-level Window Aggregation

Window Result
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How to Generate Efficient Code for Incremental Execution

Incremental Algorithms

5 SoE SlideSide| 9 Generate workload-
ane , . .
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General Aggregation Graph: Capture Low-Level
Dependencies

int leaflte 0;
for (auto &t: input) {
if (leaflIt WINDOTI\T?SIZE) {
£ (int 0;1< oW S )
[i+1] in(ss([i]l,

> Aggregation functions nrien LD STz
> Window Types g

S Lsps

20



Efficient Multi-core Execution

5x to more than one order of magnitude better throughput
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Scale-up Stream Processing Engine

Hardware-efficient Multi-core Reliable stream
single-core parallelization processing
execution
Computation Parallel window Fault-tolerant
sharing over execution strategy window operators
windows
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Scale-up Engines Have Limited Adoption due to Lack of Built-
In Fault-Tolerance

"""""""""""" Selection Aggregation
persist incoming =m =/;1\ ,
streams <*--- 0O O U O OO0 O persist operators
(1) it with state

2

> Fault-tolerance requires persisting data from queries
> Persistence is offloaded to external systems
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Kafka Ingestion Trails Scale-up Performance

scale-out and increase

maintenance cost
100000 /8800 A
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Yahoo Streaming Benchmark
m LightSaber m Kafka

Single-node fault-tolerance without compromising performance!
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Key Idea: Reduce Required Disk I/0 Bandwidth

\ discard
data

f compression

SSD 1I/0 bandwidth

Throughput (MB/s )

25



Scabbard: Reduce Required Disk I/0 Bandwidth

. discard
data

%> compression
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highly-reductive operators
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Single-Node Fault-Tolerant Stream Processing

K SCABBARD

> (Co-optimize persistence and query execution
> JIT compile compression operators at runtime
> Use remote storage (e.g., EBS) and high-speed networking (RDMA)
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Scale-up Stream Processing Engine

Hardware-efficient Multi-core Reliable stream
single-core parallelization processing
execution
Computation Parallel window Fault-tolerant
sharing over execution strategy window operators
windows
HammerSlide
mll | E SCABBARD
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Summary

Single-node SPEs provide a practical alternative for scalable
and reliable stream processing!

https://github.com/Isds/LightSaber

9 Thank you!

o

_ George Theodorakis
Questions? george.theodorakis@neo4j.com
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https://github.com/lsds/LightSaber

