' 2 | SDS Imperial College
Large-Scale Data & Systems Group London

Scalable and Fault-Tolerant Data Stream
Processing on Multi-Core Architectures

George Theodorakis
Systems Research Group, Neo4;
(was Imperial College London)

Throughput and Result Freshness Matter

Q

ACE Data-intensive Low-latency
system results
High-throughput
processing

Facebook Insights: 12 GB generated content/s < 10 sec latency
24M credit card transactions/user < 10 ms latency
PB data/day

< 1 ms latency
NovaSparks: 150M trade options/s

< 1 ms latency

4@

S Lsps

=&

T

Distributed Stream Processing Engines Face Challenges

> Complex analytics scalability
> Fault-tolerance

Cons
> Cross-process and network overheads

> Unpredictable latency guarantees
> |nefficient execution strategies

SpoﬁsZ

Streaming

™ Lsps 3

COST of Distributed Execution

Yahoo Streaming Benchmark
Flink Spark

Single-threaded
100 / . implementation

80

60

40

20

Throughput (1086 tuples/s)

1 2 3 4 5
Nodes

4@

@ Lsps

Highly-Parallel Scale-up Architectures in Data Centers

PCle Bus

| o — E
g% G| BlIG G ssD \ifast storage
10s of (B | G Gl G| G |
! cn [cN e |
CPU cores i C. G . Gy .
o L3 L3
: T T . high-speed
. DRAM oMA [Network | networking
| Card [
T |

* Are scale-up systems a practical alternative for scalability and fault tolerance?

S LSDS

High-Performance Streaming and Fault-Tolerance is Hard

Scale-up Stream Processing Engine

Hardware-efficient Multi-core Reliable stream
single-core parallelization processing
execution
Computation Parallel window Fault-tolerant
sharing over execution strategy window operators
windows

4@

> Lsos 6

=

Scale-up Stream Processing Engine

<//*”/////////////

Hardware-efficient
single-core
execution

Computation
sharing over
windows

4@

™ Lsps

=

Scale-up Stream Processing Engine

_——

Hardware-efficient Multi-core
single-core parallelization
execution
Computation Parallel window
sharing over execution strategy
windows

HammerSlide

SlideSide

4@

™ Lsps

=

Scaling Window Operators on Multi-Core Processors

Incremental _
Performance — Computation #]: Parallelism

5

& Lsps

Tension Between Parallelism & Incremental Computation

Tumbling Windows Sliding Windows
Nothing to optimize Parallel Execution Incremental Execution
i E-O—Ws N _E- W
. W NV -/.'!'_'_'_i _____ H — W
o__E_ W I ! ->—w; W W
H B B B B H B B B N H H B B BN
- Sequential
- Work Efficient

™ Lsps 10

& Lsps

Existing System Implement Ad-Hoc Solutions

Incremental _
Performance — Computation #]: Parallelism

5355

11

S Lsps

Existing System Implement Ad-Hoc Solutions

Conflicting Objectives

!
/ Parallelism

®

/\
Incremental @
Computation S

Performance

12

@ Lsps

Let’s Double the Window Slide!

——————

- - o o o=

13

@ Lsps

Let’s Double the Window Slide!

14

Two Sides of the Same Coin

Partial Aggregates 1
Incremental Computation
Sashes -
Data-dependent computation
Panes) No data dependencies
R Parallel Computation
______ (| P
H_H_ B N
N W
H H H W

*- How to partition streams into intermediate steps?

& Lsps 15

Create a Model That Splits Aggregation Into Steps

Sequential Design choice
)
Parallel
Incremental - N
/7 /\
\—

@ Lsps

LightSaber: Combine Parallelism With Incremental Execution

arallel

Aggregation Incremental |

Logical Query Plan

B ORORO

v

Code PAT Executio
Generation |
~ (2] Logical
Query Task L | |Optimizations
OOl | . - gl_==es |
""""""""" tcpuo
Worker Il“
Task \. @
Input Dispatcher - CPU1 —. Qutput
Streams P Streams
34 Worker Il“ -~

& Lsps 17

Parallel Aggregation Tree: Multi-level Window Aggregation

Window Result

& Lsps

Tuple i

Tuple i

O]
Sash
Merge
. Sash Multi-core
Window Fragments ==~
g \‘ MGR para"el
) ———
Sash Sash Sash
Merge Merge Merge
‘/;t—“’
Pane g Pane o < Increm@
ﬂ;rgeu Merge-- D

SIMD-parallel

18

How to Generate Efficient Code for Incremental Execution

Incremental Algorithms

5 SoE SlideSide| 9 Generate workload-
ane , . .
> Two-Stacks & query- specific code
Merge :
SlickDeque |, ..
SlideSide: A fast fncrerr;::lt:::, ISet.réelelljr:riPel;ocessing Algm.'ithm for
No best approach

S Lsps 19

General Aggregation Graph: Capture Low-Level
Dependencies

int leaflte 0;
for (auto &t: input) {
if (leaflIt WINDOTI\T?SIZE) {
£ (int 0;1< oW S)
[i+1] in(ss([i]l,

> Aggregation functions nrien LD STz
> Window Types g

S Lsps

20

Efficient Multi-core Execution

5x to more than one order of magnitude better throughput

@ 28552 28042 | 10971 58072
3 1000 M&/s MB/s MBS MBS
@ 1927 :
o {00 VB/s » Flink
o 0 w Scotty
= m SABER
o 1
< m LightSaber
5 0.1
i
= 0.01
0} CA
Y multi-key grouping Y h
i ~ |[300,1] >
v
Ysum Yavg Olavg Yavg (9) ndt cht
60,1 60,1 [3600,1] [128,1] 30.1 10.10
\[] []/ N J [30,]/ [10,10]
Y Yo Y
Google Cluster Smart Grid LRB YSB

& Lsps 21

Scale-up Stream Processing Engine

Hardware-efficient Multi-core Reliable stream
single-core parallelization processing
execution
Computation Parallel window Fault-tolerant
sharing over execution strategy window operators
windows

HammerSlide

SlideSide

4@

™ Lsps

=

Scale-up Engines Have Limited Adoption due to Lack of Built-
In Fault-Tolerance

"""""""""""" Selection Aggregation
persist incoming =m =/;1\ ,
streams <*--- 0O O U O OO0 O persist operators
(1) it with state

2

> Fault-tolerance requires persisting data from queries
> Persistence is offloaded to external systems

@ Lsps 23

Kafka Ingestion Trails Scale-up Performance

scale-out and increase

maintenance cost
100000 /8800 A

10000 F

1000

100

Throughput (MB/s)

10 +

Yahoo Streaming Benchmark
m LightSaber m Kafka

Single-node fault-tolerance without compromising performance!

& Lsps

S Lsps

Key Idea: Reduce Required Disk I/0 Bandwidth

\ discard
data

f compression

SSD 1I/0 bandwidth

Throughput (MB/s)

25

Scabbard: Reduce Required Disk I/0 Bandwidth

. discard
data

%> compression

4@

™ Lsps

=

highly-reductive operators

\ o
/;l\ decide what/when to

O O ' O ' O] > persist based on
|) workload
‘ L7
EEEEE \ 9
= compress remaining
e >
data
J
| disk bandwidth
:
stable v
storage mmas

26

S Lsps

Single-Node Fault-Tolerant Stream Processing

K SCABBARD

> (Co-optimize persistence and query execution
> JIT compile compression operators at runtime
> Use remote storage (e.g., EBS) and high-speed networking (RDMA)

27

Scale-up Stream Processing Engine

Hardware-efficient Multi-core Reliable stream
single-core parallelization processing
execution
Computation Parallel window Fault-tolerant
sharing over execution strategy window operators
windows
HammerSlide
mll | E SCABBARD
SlideSide

4@

™ Lsps

=

Summary

Single-node SPEs provide a practical alternative for scalable
and reliable stream processing!

https://github.com/Isds/LightSaber

9 Thank you!

o

_ George Theodorakis
Questions? george.theodorakis@neo4j.com

& Lsps 29

https://github.com/lsds/LightSaber

