
LSDS Large-Scale Data & Systems Group

Scalable and Fault-Tolerant Data Stream
Processing on Multi-Core Architectures

George Theodorakis
Systems Research Group, Neo4j
(was Imperial College London)

LSDS Large-Scale Data & Systems Group

Throughput and Result Freshness Matter

2

…

High-throughput
processing

Low-latency
results

Data-intensive
system

Facebook Insights: 12 GB generated content/s < 10 sec latency
Feedzai: 24M credit card transactions/user < 10 ms latency
Uber: PB data/day < 1 ms latency
NovaSparks: 150M trade options/s < 1 ms latency

LSDS Large-Scale Data & Systems Group 3

Distributed Stream Processing Engines Face Challenges

Pros
> Complex analytics scalability
> Fault-tolerance

Cons
> Cross-process and network overheads
> Unpredictable latency guarantees
> Inefficient execution strategies

LSDS Large-Scale Data & Systems Group 4

COST of Distributed Execution

0

20

40

60

80

100

0 1 2 3 4 5

Th
ro

ug
hp

ut
 (1

06
tu

pl
es

/s
)

Nodes

Yahoo Streaming Benchmark
Flink Spark

Single-threaded
implementation

LSDS Large-Scale Data & Systems Group 5

Highly-Parallel Scale-up Architectures in Data Centers

10s of
CPU cores

L3

C1

C2

C3

C4

C5

C6

C7

C8

L3

C1

C2

C3

C4

C5

C6

C7

C8

Network
Card

DRAM
So

ck
et

 1

So
ck

et
 2

PCIe Bus

DMA

SSDSSD

high-speed
networking

fast storage

E Are scale-up systems a practical alternative for scalability and fault tolerance?

LSDS Large-Scale Data & Systems Group 6

High-Performance Streaming and Fault-Tolerance is Hard

Hardware-efficient
single-core
execution

Multi-core
parallelization

Reliable stream
processing

Parallel window
execution strategy

Computation
sharing over

windows

Fault-tolerant
window operators

Scale-up Stream Processing Engine

LSDS Large-Scale Data & Systems Group 7

Hardware-efficient
single-core
execution

Computation
sharing over

windows

Scale-up Stream Processing Engine

LSDS Large-Scale Data & Systems Group 8

Hardware-efficient
single-core
execution

Multi-core
parallelization

Parallel window
execution strategy

Computation
sharing over

windows

Scale-up Stream Processing Engine

HammerSlide

SlideSide

LSDS Large-Scale Data & Systems Group 9

Scaling Window Operators on Multi-Core Processors

Performance ParallelismIncremental
Computation

LSDS Large-Scale Data & Systems Group 10

Tension Between Parallelism & Incremental Computation

w3

w2

w1 w1

w2- +

w3+-

Incremental ExecutionParallel Execution

Sliding WindowsTumbling Windows

Nothing to optimize

w1

w2

+ Work Efficient
- Sequential+ Parallel

- Work Efficient

LSDS Large-Scale Data & Systems Group 11

Existing System Implement Ad-Hoc Solutions

Performance ParallelismIncremental
Computation

LSDS Large-Scale Data & Systems Group 12

Existing System Implement Ad-Hoc Solutions

Conflicting Objectives

Performance

Incremental
Computation

Parallelism

LSDS Large-Scale Data & Systems Group 13

Let’s Double the Window Slide!

LSDS Large-Scale Data & Systems Group 14

Let’s Double the Window Slide!

LSDS Large-Scale Data & Systems Group 15

Two Sides of the Same Coin

Incremental Computation

Panes
+

Sashes

No data dependencies

Data-dependent computation

Partial Aggregates

Parallel Computation
-

+

E How to partition streams into intermediate steps?

LSDS Large-Scale Data & Systems Group 16

Create a Model That Splits Aggregation Into Steps

Sequential

Parallel

Incremental

Design choice

LSDS Large-Scale Data & Systems Group 17

LightSaber: Combine Parallelism With Incremental Execution

Worker

CPU1

σ αα

Logical Query Plan

Task
Dispatcher

Worker

CPU0

1

σ α
Query Task

Parallel
Aggregation

PAT
Incremental
Execution

GAG
Code

Generation
Logical

Optimizations
2

Input
Streams

3

Output
Streams

4

LSDS Large-Scale Data & Systems Group 18

Parallel Aggregation Tree: Multi-level Window Aggregation

TupleTupleTuple

IncrementalPane
Merge

TupleTupleTuple

Pane
Merge

Sash
Merge

Sash
Merge

Sash
Merge

Sash
Merge

Sash
Merge

SIMD-parallel

Multi-core
parallel

Window Result

Window Fragments

LSDS Large-Scale Data & Systems Group

No best approach

19

How to Generate Efficient Code for Incremental Execution

Incremental Algorithms
SoE

SlickDeque
Two-Stacks

SlideSide ?Pane
Merge

Generate workload-
& query- specific code

LSDS Large-Scale Data & Systems Group 20

General Aggregation Graph: Capture Low-Level
Dependencies

int leafIter = 0;
for (auto &t: input) {
if (leafIter == WINDOW_SIZE) {
for (int i = 0;i<WINDOW_SIZE;++i)
s[i+1] = min(ss[i],

l[WINDOW_SIZE-1-i]);
leafIter = 0; ps = INT_MAX;

}
ps = min(ps, t);
emit_result(min(ps,

ss[WINDOW_SIZE-leafIter]));
leafIter++;

}

> Aggregation functions
> Window Types

LSDS Large-Scale Data & Systems Group 21

Efficient Multi-core Execution

0.01

0.1

1

10

100

1000
Th

ro
ug

hp
ut

 (1
06

tu
pl

es
/s

)
Flink
Scotty
SABER
LightSaber

5x to more than one order of magnitude better throughput

28552
MB/s

28042
MB/s

10971
MB/s 1927

MB/s 783
MB/s 339

MB/s

58072
MB/s

YSB

σ

γcnt

[10,10]

CA

γsum

[60,1]

σ

γavg

[60,1]

Google Cluster

αavg

[3600,1]
γavg

[128,1]

Smart Grid

γavg

σ
[300,1]

γcnt

[30,1]

LRB

multi-key grouping

LSDS Large-Scale Data & Systems Group 22

Hardware-efficient
single-core
execution

Multi-core
parallelization

Reliable stream
processing

Parallel window
execution strategy

Computation
sharing over

windows

Fault-tolerant
window operators

Scale-up Stream Processing Engine

HammerSlide

SlideSide

LSDS Large-Scale Data & Systems Group 23

Scale-up Engines Have Limited Adoption due to Lack of Built-
in Fault-Tolerance

persist incoming
streams

1
persist operators

with state
2

σ α

Selection Aggregation

> Fault-tolerance requires persisting data from queries
> Persistence is offloaded to external systems

LSDS Large-Scale Data & Systems Group

1

10

100

1000

10000

100000

Yahoo Streaming Benchmark

Th
ro

ug
hp

ut
 (M

B/
s

)

LightSaber Kafka

24

Kafka Ingestion Trails Scale-up Performance

scale-out and increase
maintenance cost

220

78800

Single-node fault-tolerance without compromising performance!

LSDS Large-Scale Data & Systems Group 25

Key Idea: Reduce Required Disk I/O Bandwidth

SSD I/O bandwidth

discard
data

compression

Th
ro

ug
hp

ut
 (M

B/
s

)

LSDS Large-Scale Data & Systems Group 26

Scabbard: Reduce Required Disk I/O Bandwidth

σ α

disk bandwidth

stable
storage

decide what/when to
persist based on

workload

1

compress remaining
data

2

highly-reductive operators

σ
discard

data

compression

LSDS Large-Scale Data & Systems Group 27

Single-Node Fault-Tolerant Stream Processing

> Co-optimize persistence and query execution
> JIT compile compression operators at runtime
> Use remote storage (e.g., EBS) and high-speed networking (RDMA)

SCABBARD

LSDS Large-Scale Data & Systems Group 28

Hardware-efficient
single-core
execution

Multi-core
parallelization

Reliable stream
processing

Parallel window
execution strategy

Computation
sharing over

windows

Fault-tolerant
window operators

Scale-up Stream Processing Engine

HammerSlide

SlideSide
SCABBARD

LSDS Large-Scale Data & Systems Group 29

George Theodorakis
george.theodorakis@neo4j.com

Thank you!
Questions?

Summary

https://github.com/lsds/LightSaber

Single-node SPEs provide a practical alternative for scalable
and reliable stream processing!

https://github.com/lsds/LightSaber

