
Collection Skeletons:
Declarative Abstractions for Data Collectionsab

7th UK System Research Challenges Workshop

Björn Franke1, Zhibo Li1, Magnus Morton2, Michel Steuwer1

27/04/2023
1University of Edinburgh
2Huawei Central Software Institute

aFunded by the Huawei-Edinburgh Joint Lab
bBest Paper Award, SLE 2022

Collections in Programming

Collections are of vital importance in programming. In practice, to
choose the right collection and implementation given a problem
domain and target platform is not easy.

Singly-Linked List

Set

Binary Tree

Circular Buffer

Stack

Array
K-D Tree

How to
choose a

proper data
structure?

1

Collections in Programming

Let us stick with a list, but there are many implementation choices.

cds::intrusive::lazy_list

Std::forward_list

Boost::container::slist

Std::list
Self-implemented list

Maybe a list
is suitable?

2

Collections in Programming

It can be equally hard for a programmer to even select the most
appropriate collection from an existing collection hierarchy1.

Stack

Vector

List

List

LinkedList

Deque

Why would a stack be a vector or a list?

1Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and Charles Zhang.
Complexity-guided container replacement synthesis. OOPSLA 2022.

3

How to Choose A Proper Data Collection

Let us consider a simple example. We would like to write a piece of
code consisting of a loop traversing over a data collection of
integers one by one. For each element we would like to increase the
element value by 1.

element element element

func func func

Collection

What data collection shall we use?

4

Programming in A Simple & Clean Way

Let us go over the problem domain -

3 8 8

func func func

Collection

Iterable

Variable-length

Duplicated

Ordered

Collection<Integers,Iterable,Ordered,Duplicated,Variable-length>

5

Collection Skeletons

Collection Skeletons

We develop Collection Skeletons which provide a novel, declarative
approach to data collections.

• Exposing individual properties to be specified (rather than
implicit properties like in ADTs)

• Identify a set of useful semantic and interface properties, which
capture the key aspects of data collections programmers care
about

• Evaluate a prototype C++ library implementation of our
Collection Skeletons framework and demonstrate negligible
performance impact across three different hardware platforms

6

Properties

We propose eight groups of properties to model our Collection
Skeletons. We distinguish between:

• Semantic properties
• Interface properties
• Future Work: Non-Functional properties: runtime, space, ...

7

Semantic Properties

Semantic properties specify the behaviour of the collections and
methods with which collections are accessed or modified.

• Uniqueness, e.g. a set – behaviour of insert function
• Circularity, e.g. a circular buffer – behaviour of next function

8

Interface properties

Interface properties specify certain functionality, usually in form of
access methods to be provided by the collection.

• Variability - append()
• Iterable - iter()
• Accessibility - [] operator
• Splitability - splitAt()
• UnionFind - union() and find()

9

Hybrid Properties

Some properties are of hybrid nature, i.e. they both specify access
methods and also change the way operations behave semantically.
An example of such a hybrid property is order

• Order - e.g. FIFO, Ordered
Provides iter() and changes the behaviour of the iterator

10

C++ Library & API

We have implemented a prototype library with C++ template meta
programming for our Collection Skeletons.

Declaring a collection is done like this:

11

Implementation of the Prototype Library

Based on the programming interface, we develop

• member functions for corresponding interface properties
• default methods for all collections

12

Multi-Staged Pattern Matching

How to map the property-based declaration to the concrete data
structure implementation?

Collection<int,Iterable,Ordered,Duplicated,Variable>

std::list

std::forward_list

Boost::container::slist

some 3rd-party list

13

Multi-Staged Pattern Matching

Pattern matching - possible outcomes:

1. Properties form an eligible declaration
1.1 Concrete data structure found in library
1.2 Failure to find concrete data structure - library incomplete, error

2. Properties form an erroneous declaration - compilation error

14

Selecting A Concrete Data Structure from A Candidate List

Candidate List - R is an intermediate class that enables
implementation flexibility and the selection of an optimal concrete
data structure.

Intermediate Class

#ifdef Condition1

using type =

#elif Condition2

using type =

#elif Condition3

using type =

...

FindOptimal()

R

Can be automated, e.g. CollectionSwitch, CGO’18.

15

API Design and Rules

Simple and user-friendly API, but rules are required to prevent
nondeterministic behaviours.

• The property list is order-free
Collection<A,B> = Collection<B,A>

• Mutually exclusive properties cannot co-exist in a property list
Collection<A,¬A>

• No guarantee on algebraic operations for properties
Collection<?> = merge(Collection<A>,Collection)

16

Collections & Parallelism

Types of Parallelism

• Implicit Parallelism
Transparent to the applications programmer
Hidden in e.g. collection access functions

• Explicit Parallelism
Exposed to the applications programmer
Parallel algorithmic skeletons

17

Implicit Parallelism

• Hiding parallel implementations “behind the scenes”, e.g.
parallel STL

• Parallelism is encapsulated within e.g. find operation
• Just another collection implementation in our scheme
• No difference in application code

18

Collections & Algorithmic Skeletons

𝑥0

𝑓()

𝑥1

𝑥5

𝑥3

𝑥6

𝑥2

𝑥4

...

...𝑓(𝑥0)

𝑓(𝑥4)

𝑓(𝑥3)

𝑓(𝑥5)

𝑓(𝑥2)

𝑓(𝑥1)

𝑓(𝑥6)

𝑚𝑎𝑝(collection,𝑓)

Necessary properties

for a map

iterable − 𝑖𝑡𝑒𝑟(),𝑛𝑒𝑥𝑡()

Sufficient properties

for a parallel map

random accessible − []

19

Collections & Algorithmic Skeletons

• Data-Parallel Skeletons – iterable, random access
• Divide & Conquer – splitable, by value or position; mergeable
• Stencil – neighbourhood property, provides neighbourhood
collection for each element; Rectangular/Square

• Wavefront – frontier, based on data dependence properties of f!

20

Collections & Algorithmic Skeletons

Interesting questions:

• What properties can be automatically inferred from source
code? e.g. interface properties

• What properties can be inferred for the resulting collection?
• if properties of the source collection are known
• if properties of the function are known, e.g. injective

• What are the rules of collections?
e.g. merging two collections w.r.t. resulting properties

• Can we check properties of C & f at compile-time/run-time?
• Is our set of properties complete?

21

Evaluation

Benchmarks and Benchmarking Methodology

• Prototype library evaluated against standard benchmarks
(Olden, Rodinia, Parboil), open-source applications, and
micro-benchmarks.

• Manual rewriting of legacy C benchmarks
• replaced existing low-level data structures and their access
functions,

• no other code rewriting/optimisation,
• same input data for all versions for performance comparison.

• Three target platforms (Intel Desktop, Intel Server, Arm Server)

22

Experimental Results - Abstraction Overhead

NUC Concrete

NUC Skeletons
4.55

4.60

4.65

4.70

4.75

4.80

4.85

4.90

C
om

pu
ta

tio
na

l t
im

e(
s)

 25%~75%
 Range within 1.5IQR
 Median Line
 Mean
 Outliers

23

Experimental Results - Speedup

0.
90

1.
00

1.
01

1.
01 1.
02 1.
04 1.

09

1.
21 1.

26

1.
38

0.
76

0.
99

1.
16

0.
86

1.
28

1.
00

1.
35

1.
07

1.
34 1.
36

0.
65

1.
00

1.
28

0.
90

0.
99

1.
00

1.
97

1.
15

1.
32

1.
52

mr
i-q

bis
ort mp

3
tin
n

md
5

isin
g lud

tre
ea
dd

km
ea
ns

kru
sk
al

0.75

1.00

1.25

1.50

2.00

1.00

2.00

Sp
ee

du
p

Benchmark

 Intel Desktop
 Intel Server
 Arm Server

1.
46

1.
88

2.
17 2.
29

6.
11

7.
65

11
.2
0

1.
38

4.
31

2.
78

1.
03

9.
22

1.
87

16
.3
7

1.
33

9.
26

2.
54

1.
34

11
.6
5

1.
58

10
.3
6

sim
ple
Ha
sh inf

ix

sc
he
du
ler sh

or se
t

lib
ac
tor

jos
ep
h

1.5

3

6

12

1

2

4

8

16

Sp
ee

du
p

Benchmark

 Intel Desktop
 Intel Server
 Arm Server

24

Experimental Results - Flexibility

Optimal concrete data structure for each benchmark and target platform

Benchmark Intel Desktop Intel Server Arm Server
Optimal Speedup Optimal Speedup Optimal Speedup

treeadd array_tree 1.61 array_tree 1.09 array_tree 6.37
bisort array_tree 1.21 array_tree 1.33 array_tree 1.54
ising slist 1.08 list 1.00 list 1.00
set unordered_set 6.09 unordered_set 9.22 unordered_set 11.65

libactor list 7.65 list 1.87 list 1.58
tinn vector 1.01 vector 0.88 vector 0.9
shor vector 2.29 vector 1.23 vector 1.34

simpleHash forward_list 1.61 forward_list 1.44 forward_list 1.36
mp3 flat_set 1.01 set 1.16 set 1.28
lud vector 1.09 vector 1.34 vector 1.97

kmeans vector 1.26 vector 1.34 vector 1.32
mri-q vector 0.90 vector 0.76 vector 0.65

25

Experimental Results - Performance Influencing Factors

Some factors, such as the size of the data collection, can have an
impact on its performance and different architectures may offer
different performance trade-offs.

64K 128K 512K 1M 8M 16M 32M 64M

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee
du
p

Input size

 Intel Desktop
 Intel Server
 Arm Server

Speedup of array-based binary tree for bisort over a range of dataset sizes 26

Experimental Results - Implicit Parallelism

27

Experimental Results - Parallel Algorithmic Skeletons

28

Summary, Conclusions &
Future Work

Summary & Conclusions

• Declarative data collections exposing fundamental collection
properties to the programmer - simplification for the user

• No/minimal performance overhead
• Opportunity for performance improvements through greater
implementation flexibility

• Different optimal concrete data structures depend on
application context and target platform

• Scope for implicit and explicit parallelism – compatibility with
parallel algorithmic skeletons

• Speedups across a range of benchmarks for different target
platforms - average speedup 2.57-2.93.

29

Future Work

• Wider range of supported platforms, e.g. GPUs and accelerators
• More on Collection Skeletons and Parallel Algorithmic Skeletons
• Dynamic adaptation at runtime
• Other problem domains: matrices, graphs,... with
dynamic/data-dependent properties

30

Thanks for listening! Questions?

31

	Collection Skeletons
	Collections & Parallelism
	Evaluation
	Conclusion & Future Work

