
Serverless-Native Analytics

UK Systems 2023

Co-authors: Shengda Zhu & Shyam Jesalpura

Supervised by: Boris Grot, Antonio Barbalace, Amir Shaikha

Analytics: computational analysis of data
● SQL queries are widely used → e.g., select count(*) from Cars c where c.color=ʻblueʼ

Toward Serverless Analytics

2

● Resource-intensive: compute + memory + storage

3

Toward Serverless Analytics

Computing Node

Serverless (e.g., AWS Lambda):

Toward Serverless Analytics

VM-based (e.g., Amazon EC2):

4

● Slow to scale 🐢
● Always-on → 💰💰💰

● On-demand
● Extremely elastic but …
● Limited execution time
● Stateless
● No direct communication

Today’s computing node types:

5

Toward Serverless Analytics

challenges come!!!

Existing Solutions:

● Focus on partial problems
○ Data transfer
○ Storage
○ Computing
○ …

● Hard-coded for certain queries
● Entirely closed-source platforms

○ e.g. Amazon EMR, Athena

6

Challenge:
End-to-end Optimization

Large & complex optimization space:

● Number of workers and worker type
at each stage

● Intermediate storage type (e.g., S3
vs in-memory cache)

● Communication options
● …

7

Not independent but interrelated!

Motivational Example

8

Query time = CPU time + communication time

Trade-offs: worker type, #worker and communication overhead

○ Using “fat” workers (more cores, more memory) → less workers → less data to transfer.
But…

○ Larger chunks of data per worker → Long I/O latency

○ Fat workers lead to overprovision easily → 💰💰💰

Need an open, serverless-native analytics platform

Sweet spot

Insight: Serverless Analytics are Still Analytics

Can apply established query-optimization techniques!

Must specialize to the serverless context!
9

Life of a Query

10

Life of a Query

11

SELECT owner_name

FROM Cars c, Ownership o

WHERE c.car_id = o.car_id

and c.color = ‘blue’

𝝅 owner_name

σ color=”Blue”

⋈ car_id = car_id

Cars Ownership

P3

P2

P1

Query Optimization

C
os

t M
od

el

P3

P1 100

P2 150

P3 50
12

: Virtual machine

Serverless Query Optimization

13

P3

P2

P1

Serverless Query
Optimization

C
os

t M
od

el P3

P1 100

P2 150

P3 50 14

Query Execution

⋈

⋈

ππ

σ

σσ

15

Optimisation Space

Generic:

● Storage
● Communication
● Computation

C
os

t (
$)

Run time (s)

Pareto frontier

16
Lower is
Better

Query-specific:

● Cardinality
● Selectivity
● Parallelism

WordCount on 1TB data

17

Progress

Cost Model

● Benchmarking storage services (S3/Elasticache)
● Benchmarking compute: Serverless/VMs

○ Network BW
○ Startup time

18

Progress
Operators:

● Scan, filter, aggregate

19

Next steps
Add exchange operator for shuffle/map-reduce/joins

20

Summary

Serverless workers + query planning → serverless native analytics 🥳

Thank You for your attention

Contacts:
shyam.jesalpura@ed.ac.uk

shengda.zhu@ed.ac.uk

mailto:shyam.jesalpura@ed.ac.uk
mailto:shengda.zhu@ed.ac.uk

Query Plan

● Pipeline
○ Stream data without communication
○ Selection, projection
○ Mapped to one lambda

● Pipeline-breakers → communication boundary
○ Aggregations, joins

● Scan operator
○ S3, Parquet

● Communication
○ Storage, Redis, etc.

● Worker capabilities
○ Count, # of cores, memory

● Producer-consumer model (push engine)

⋈

⋈

ππ

σ

σσ

23

vHive: our open-source serverless stack

Representative of today’s clouds
○ Industry-grade technologies
○ Knative FaaS API, Firecracker & gVisor MicroVMs,

Kubernetes
○ First to support Firecracker snapshots at scale

State-of-the-art performance analysis tools

github.com/vhive-serverless/vhive

24

https://github.com/ease-lab/vhive

