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Analytics: computational analysis of data
● SQL queries are widely used → e.g., select count(*) from Cars c where c.color=ʻblueʼ

Toward Serverless Analytics
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● Resource-intensive: compute + memory + storage
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Toward Serverless Analytics

Computing Node



Serverless (e.g., AWS Lambda):

Toward Serverless Analytics

VM-based (e.g., Amazon EC2):
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● Slow to scale  🐢
● Always-on   →   💰💰💰

● On-demand
● Extremely elastic but … 
● Limited execution time
● Stateless 
● No direct communication

Today’s computing node types:
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Toward Serverless Analytics

challenges come!!!



Existing Solutions:

● Focus on partial problems
○ Data transfer
○ Storage
○ Computing
○ …

● Hard-coded for certain queries
● Entirely closed-source platforms

○ e.g. Amazon EMR, Athena
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Challenge: 
End-to-end Optimization

Large & complex optimization space:

● Number of workers and worker type 
at each stage

● Intermediate storage type (e.g., S3 
vs in-memory cache)

● Communication options 
● …

7

Not independent but interrelated!



Motivational Example
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Query time = CPU time + communication time

Trade-offs: worker type, #worker and communication overhead

○ Using “fat” workers (more  cores, more memory) → less workers → less data to transfer. 
But…

○ Larger chunks of data per worker → Long I/O latency

○ Fat workers lead to overprovision easily → 💰💰💰

Need an open, serverless-native analytics platform

Sweet spot



Insight: Serverless Analytics are Still Analytics

Can apply established query-optimization techniques!

Must specialize to the serverless context!
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Life of a Query 
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Life of a Query 
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SELECT owner_name

FROM Cars c, Ownership o

WHERE c.car_id = o.car_id

and c.color = ‘blue’

𝝅 owner_name

σ color=”Blue”

⋈ car_id = car_id

Cars Ownership
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: Virtual machine



Serverless Query Optimization
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Query Execution
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Optimisation Space

Generic:

● Storage
● Communication
● Computation
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Lower is
Better

Query-specific:

● Cardinality
● Selectivity
● Parallelism



WordCount on 1TB data
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Progress

Cost Model

● Benchmarking storage services (S3/Elasticache)
● Benchmarking compute: Serverless/VMs

○ Network BW
○ Startup time
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Progress
Operators:

● Scan, filter, aggregate 
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Next steps
Add exchange operator for shuffle/map-reduce/joins
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Summary

Serverless workers + query planning → serverless native analytics  🥳 



Thank You for your attention

Contacts:  
shyam.jesalpura@ed.ac.uk

shengda.zhu@ed.ac.uk
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Query Plan

● Pipeline
○ Stream data without communication
○ Selection, projection
○ Mapped to one lambda

● Pipeline-breakers → communication boundary
○ Aggregations, joins

● Scan operator
○ S3, Parquet

● Communication
○ Storage, Redis, etc.

● Worker capabilities
○ Count, # of cores, memory

● Producer-consumer model (push engine)
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vHive: our open-source serverless stack

Representative of today’s clouds
○ Industry-grade technologies
○ Knative FaaS API, Firecracker & gVisor MicroVMs, 

Kubernetes
○ First to support Firecracker snapshots at scale

State-of-the-art performance analysis tools 

github.com/vhive-serverless/vhive
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https://github.com/ease-lab/vhive

