A direct I/0O framework
for SoC-based accelerators

Shinichi Awamoto, Antonio Barbalace, Michio Honda

University of Edinburgh

SoC-based Accelerators

They can execute the entire application code on its general-purpose cores.

special
core
general

core

Xilinx Zynq NEC SX-Aurora TSUBASA
Vector Engine

VSV

GPU kernel function

photos from: xilinx.com, www.mellanox.com, uk.nec.com, nvidia.com

The I/O path in the accelerator

Yet, the host system mediates data access, incurring overhead.

special

eneral
g /O access

/O latency analysis

Multiple data copies and dispatch Even on microbenchmarks, the
inside of redirected system calls overhead is obvious.
Increase the latency' —*— Accel (read) —— Accel (write) —e— Accel (sync)
Host (read) Host (write) Host (sync)
105ns Accel. App 20- 05
User [\ accel. glibe -
______ .:___ i — I R P 315 04
Kernel | 42748ns 3 0.3
Linux 2101
_____________________________ g 0.2
°
Hw |_Host CPU Pfoc. Cores = 9 0.1
PCle Hub cel. Device ! oo

T > 00 1 200 400 600 8001000
m read/write [KB] write+fdatasync [KB]

Design options

* Direct buffer cache access 25000 | 5 fe2d (amis)
e.g., GPUfs (AspLOS ‘13), SPIN (ATC ‘17) O] Mol ookl
Only DMAs are mitigated. > 15000
y ° £ extdfs
* Heterogeneous-arch kernels 5 109091 overhead
. . 5000 1 el
e.g., Multikernel (sosp ‘09), Popcorn Linux (ASPLOS “17) 25001 27 o.oge— s B S
No kernel context in some accelerators q 200 o o o0 800 1000
read/write [KB
* Linux kernel library (rocdunet 10) Conventional system software does not

: erform well on wimpy accelerator cores.
General file system overheads P Py

Design decisions

Full stack design of device driver, Acgel. App
file system and app is needed.

Accel. Accel. lib

userspace

* Userspace device drivers

* Lightweight data path abstractions

* Accelerator-specific software specialization Hardware

Device driver

Device registers and DMA buffers are
remapped from the host into accelerator’s
address space.

-

KVS :
Fs Accel. lib
NVMe
driver j

accelarator’s
physical memory

Direct I/O Engine

' registers |

- -

DMA buffers

host physical memory

registers

jremapping

File system & key-value store

-

KVS :
ES Accel. lib
NVMe
driver j

* Lightweight ext2-like file system to minimize software overheads

* Ongoing effort of building a KVS from scratch

Hash Table (H(offset)) | \|] \| 1 |:
I
DMA-Capable Buffers | | ,

On-Disk Layout |inode Blocks

Data Blocks

\

KVS

Accel. lib

Vectorized CRC32C algorithm s

NVMe
-

)

driver
The faster checksum algorithm could speed up file systems,
key value stores and network stacks.

string

| ['H,'e, T, T, o " "W, o, ', T, d) |
. . . . 1. load to vector regs - I ' . I '
* rewrlitten In vector instructions ™ T Y
. ing 256 32-bit integ
proceSSIng It Inte ers at 2. convert with a lookup table ! {]
Once 0x00000000, 0x£26b8303, 0xe13b70£7, |oun-- ,_Jr___________,_i ____________ :
0x1350£3f4, 0xc79a971fF, 0x35f1141c, ‘o D ‘o 3. merge
Ox26ale7e8, Oxdd4cabdeb, 0x8ad958¢cf, ‘Ad A A 4 Ad
Dx78b2dbcc,Ux6be?2838,0x9989ab3b, L s :_;
_________ >

Evaluation setup

* Host:

Intel Xeon Gold 6126 (2.60GHz, 12-cores)
192GB RAM
* NVMe SSD: Samsung 960GB PM983
* Accelerator: NEC SX-Aurora TSUBASA

8 cores @1.4GHz

48GB RAM

photos from: sx-aurora.github.io

Microbenchmark of CRC32C

Lower is better.

3.0
i vectorized

e
&)

N
2

[
iy

execution time (us)
=
(9]

=
Ul

0.0

Bl original

1l

128

256

512 1024

1601
140
120
1007
801
60
40
20
0

the Iength of the input string (< 4096 bytes)

Bl original
i vectorized

improved
by 10x

4096 16384 65536
(>= 4096 bytes)

Realistic KVS workloads: YCSB benchmark

Bl direct W redirect

%30 15 10.0
* LevelDB w/ sw specialization and & 7.5
. 20 10
direct 1/0 5 5.0
§10 . 2.5
* Comparison w/ syscall-based LevelDB & f:f
= ° PN JEPRA | 0 00) JERNS
. . e e 8© e a0
* Data size varies from 256B to 1MB 2] PR o \)Qda@ o@a@ oe?
] 2568 16KB
. = =
e up to 2.5x throughput gain 2

* 29% performance drop observed

N

=

This will be addressed by the new KVS.

” 6’0@ e

0@(36"-6 E

Realistic application workloads:
Genome sequence matching app

* The app reads the data from storage, transforms them, and stores them

back in the storage.

Time [s]

e The g pp then processes the transformed data. Operation Bacteria Killish Mouse
Load reference sequence 0.032 0.010 2.282
Py Index reference sequence 0.634 0.259 33.859
An d Iyse D N A Se q uence Save reference index 0.093 0.101 2.019
Load reference index 0.028 0,101 1.463
(o) 1 H 1 1 Load target sequence 9.997 53.943 113.76
* 33-46% reduction in execution time g ST
Total 22.284 55.768 156.717
Mouse

(15.0GB)

Killfish

(7.0GB)

Bacteria

(2.1GB)

T

Smaller is better.
_ —
- Redirect M Hayagui
0 20 40 60 80 100 120 140 160
Exec. Time [Sec]

Summary & Future work

* |/O performance and software overhead matters in SoC-based accelerators.

* Direct storage |I/O improves performance by up to 46% in the genome
sequencing app.

T . . Accel. App
 Software specialization improves performance [¢vs ————1" SmartNICs
by up to 2.5x in key value store. & ———{ Accel. lib | " qeack | =
P NVMe NIC
' driver driver

* Ongoing work i
* network stack
* SmartNIC support
* resource sharing between the host _

Shinichi Awamoto <Shinichi.Awamoto@ed.ac.uk> Designing a Storage Software Stack for Accelerators (Hotstorage ‘20)

