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SoC-based Accelerators

They can execute the entire application code on its general-purpose cores.
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The I/O path in the accelerator

Yet, the host system mediates data access, incurring overhead.
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/O latency analysis

Multiple data copies and dispatch Even on microbenchmarks, the
inside of redirected system calls overhead is obvious.
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Design options
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Design decisions

Full stack design of device driver, Acgel. App
file system and app is needed.
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* Userspace device drivers

* Lightweight data path abstractions

* Accelerator-specific software specialization Hardware




Device driver

Device registers and DMA buffers are
remapped from the host into accelerator’s
address space.
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File system & key-value store
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* Lightweight ext2-like file system to minimize software overheads

* Ongoing effort of building a KVS from scratch
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Vectorized CRC32C algorithm s
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The faster checksum algorithm could speed up file systems,
key value stores and network stacks.
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Evaluation setup

* Host:

Intel Xeon Gold 6126 (2.60GHz, 12-cores)
192GB RAM
* NVMe SSD: Samsung 960GB PM983
* Accelerator: NEC SX-Aurora TSUBASA

8 cores @1.4GHz

48GB RAM

photos from: sx-aurora.github.io



Microbenchmark of CRC32C

Lower is better.
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Realistic KVS workloads: YCSB benchmark
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Realistic application workloads:
Genome sequence matching app

* The app reads the data from storage, transforms them, and stores them

back in the storage.
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Summary & Future work

* |/O performance and software overhead matters in SoC-based accelerators.

* Direct storage |I/O improves performance by up to 46% in the genome
sequencing app.
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* Ongoing work i
* network stack
* SmartNIC support
* resource sharing between the host _
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