
Hardware Accelerated
Cross-architecture Execution Tracing

Tom Spink



About Me

● Lecturer at the School of Computer Science, University of St Andrews

● Generally work in the area of Dynamic Binary Translation

● Core research interests:
○ Virtualisation
○ Operating Systems

○ Compilers

○ Runtime Systems

○ Security



Execution Tracing

● Running a program, and generating 

a list of instructions that have been 

executed, during the program’s run.

● Granularity: could be basic-blocks 

instead of instructions

● Output: Might generate a 

control-flow graph

What is execution tracing?

...

...

...

mov
add
sub
jmp

add
sub
jmp

mov
add
add
sub
mov
jne

add
jmp

mov
add
sub
jmp
add
sub
jmp
mov
add
add
sub
mov
jne
mov
add
sub
jmp
add
sub
jmp
mov
add
add
sub
mov
jne
add
jmp



Software-based Approach

● Tools designed for the job:
○ callgrind (valgrind)
○ perf

● Tools that can do the job:
○ gdb

● Tools that give you the ability to do 
the job:

○ Intel PIN
○ Mambo-64
○ gcc -finstrument-functions
○ Software interrupts (int3)

● Slow!



Hardware-based Approach

External
● Arm CoreSight

Internal
● Hardware watchpoints/breakpoints

○ Very few usually available - four in x86!

○ Can detect loads, stores, and fetches

● Intel Branch Trace Store (BTS)
○ 40x application runtime slowdown
○ Deprecated

● Intel Processor Trace (PT)
○ Ah - interesting!

○ <5% slowdown

Fast!

Too fast!



Intel Processor Trace

● Hardware accelerated program 
execution tracing

● Online: “Externally” monitors 
execution of software, and writes 
tracing data to an in-memory buffer

● Offline: Using the original 
source-code and compiler, an 
execution trace can be 
reconstructed

● Very little online overhead

Processor Core

Intel PT In-memory Trace 
Packet Buffer

Software Decoder
Trace Packet 

File

Program 
Binary File

Online

Offline



Intel Processor Trace

● OS support required
○ perf
○ simple-pt (Andi Kleen, Intel)

● Same-architecture tracing (x86)

● Does not generate information about 
unconditional direct branches

● Generates only result of conditional direct 
branches

● Generates target address for indirect branches

● Highly compressed packet representation

● JITted code not “supported”
○ JIT must generate additional information



Dynamic Binary Translation

● Same-architecture DBT
○ Instrumentation, e.g. Intel PIN

● Cross-architecture DBT
○ Instruction Set Simulators

■ Qemu

■ ArchSim

■ Captive

○ Legacy application execution

■ Apple Rosetta

○ Normally implemented with

Just-in-time Compilation

ThiƖ ƌư wƋƞƱ I’m 
inƗƈƯƢsƗeơ ƌn!



Terminology

ISA

Instruction Set Architecture

Host

The ISA on which the translation runtime is executing, e.g. x86

Guest

The ISA which is being executed using DBT, e.g. Arm



Debugging

Tricky!

● Guest program has its own effective 
control-flow

○ i.e. what would be observed if it was running natively.

● Host machine is executing translated code, 

which probably doesn’t correspond to guest 

code.

● How to collect guest execution trace?

1

2

3



Software Tracing

● It’s a DBT, so use instrumentation!

● Use an external tracing tool, e.g. perf
○ But what corresponds to what?

● Slow! We’re back to generic software 

tracing...

mov
add
sub
jmp

mov
mov
add

jmp

Translate

jne

mov

mov
mov
sub

jne

mov

trace

trace



Hardware Tracing

● No built-in support for Dynamic Binary Translation

● Extra work required to support JIT compiled code

● Can we exploit it for what we want to do?

Intel CPU

Intel PT x86 DBT

AArch64 
Application

⨯ Different ISA

🗸 Same ISA

???



Hardware Tracing

Idea: Collect native host trace, and map it to an equivalent guest trace

1

2

3

5

4

6

1

2

3

1

2

3

4

2

3

4

2

3

5

6

1

2

1

2

3



Mapping

● Map host basic-blocks to guest 
basic-blocks

● Host basic-blocks are generated by 
executing guest basic-blocks

But… Host basic-blocks may have more or less 
control-flow than guest!

● Runtime dynamic control-flow
○ e.g. control-flow within an instruction emulation

● Translated code optimisation
○ e.g. elimination of branches due to trace-based 

compilation

0x7f0000124a0

0x7f0000124b0

0x7f000019600

0x7f00008426a

0x7f000033438

0x40000

0x41200

0x4120c



Challenges

● How do we efficiently produce this 
mapping?

○ What if mappings change? e.g. DBT 
recompilation

● Intel PT produces tracing information 
TOO QUICKLY

○ No chance of any online decoding
○ Any chance of collecting a perfect trace?
○ Storage volume/bandwidth requirements 

huge!

● Need to consider time for offline 
processing, vs a software 
implementation

 

0x7f0000124a0

0x7f0000124b0 0x40000



Proof-of-concept

● Implemented in Qemu

● x86 host machine, AArch64 guest machine

● Qemu enables Intel PT on entry into translated 
code

● Intel PT trace written to file on disk

● Qemu disables Intel PT on exit from translated 
code

● Block chaining keeps Qemu in translated code

● Map file generated containing host virtual 
addresses of translated code representing guest 
virtual addresses

Begin guest block 
execution

Compile blockBlock in 
cache?

Emit mapping for 
Host VA to Guest 

VA

Start Intel PT

Execute native 
code

Stop Intel PT

No

Yes

List of executed 
host VAs



Proof-of-concept

● Intel PT trace is decoded into list of host virtual addresses.

● For each host VA, map file is consulted to see if corresponding guest virtual 
address exists.

● If there’s a match, the guest VA is written to the output trace.

● If there isn’t a match - it’s ignored.

0x7f0000124a0

0x7f0000124b0

0x7f000019600

0x7f00008426a

0x7f000033438

0x40000

0x41200

0x4120c



Proof-of-concept

Possibility of significant speed-up!

No Tracing: 24.607s

Naive Tracing: 149.21s

PT Internal: No Chain: 7780.21s

PT Internal: Indirect Chain: 25.41s

PT External: Perf: 31.55s



What’s next

Software domain:

● Talk directly to Intel PT
○ Custom kernel driver

● Artificially slow down execution of guest
○ Adaptive rate control

Hardware domain:

● Hardware unit for processing and consuming trace data
○ DMA directly from PT trace buffer into “translated” trace



Thank-you!

Questions?

Tom Spink
tcs6@st-andrews.ac.uk

https://tcs6.host.cs.st-andrews.ac.uk

mailto:tcs6@st-andrews.ac.uk
https://tcs6.host.cs.st-andrews.ac.uk

