An in-memory Graph System for Scalable and Consistent Legacy System Integration

Bilal Arshad (PhD Researcher) – UK Systems Research Workshop 30th Nov -2nd Dec 2021

Agenda

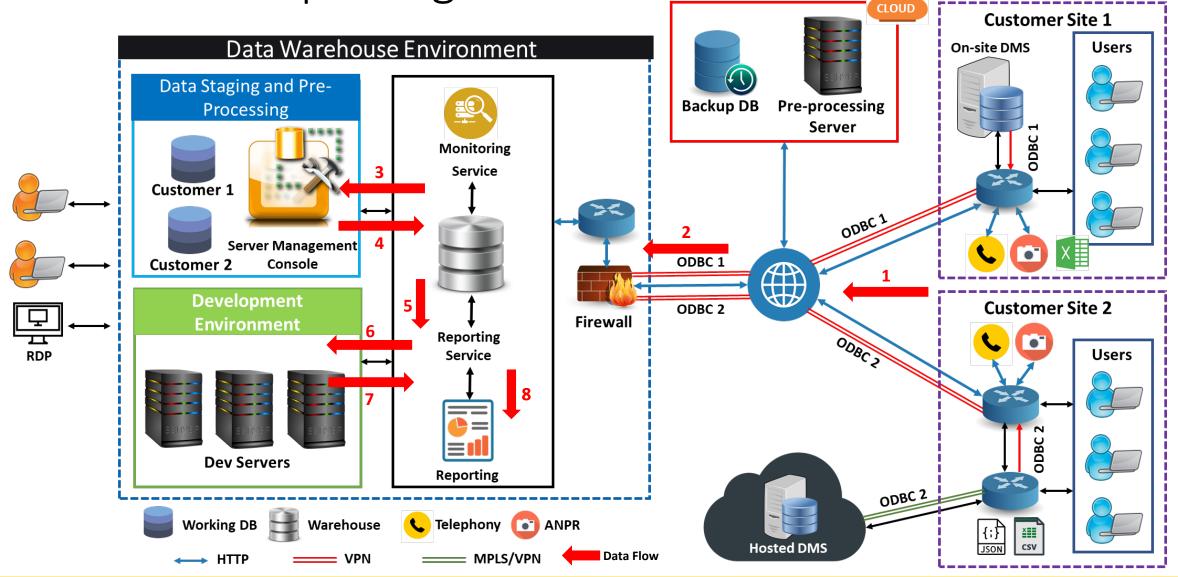
- Introduction Automotive Data Integration
- Dealer Management Systems DMS
- Graph-based data integration
- Entity resolution in data integration
- Evaluation
- Conclusion

Automotive Dealerships - UK

- There are over 4K automotive dealerships within UK
- Each dealership could be part of a Franchise or be independent (multiple dealerships within a franchise)
- Data could be coming from various data sources with varying data types and formats (financial data-sets, telephony, sales, services etc)
- Each dealership could have its own format for data storage
- Unknown datasets coming from multiple data sources that require data transformation – Black Box
- Initially manual mapping is required to extract and transform data to store in a data warehouse

Automotive Data Integration

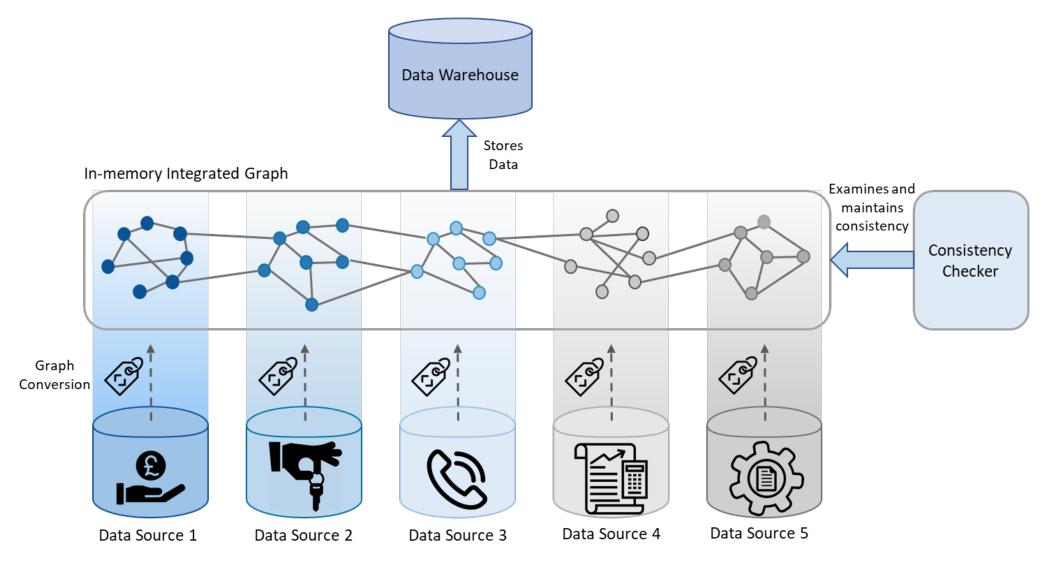
- In order to provide a 360-view of a dealership's performance, data from multiple sources is integrated to provide a complete picture
- Management Information System (MIS) allows data from multiple sources to be brought together to provide a comprehensive real-time reporting dashboard with advanced analytics capabilities.
- Advantages of Integration
 - Feeds from management systems, telephony, account packages, sales tracking systems etc
 - Real-time data delivered as usable information
 - Acquire data from legacy systems Dealer Management Systems (DMS)



Dealer Management Systems - DMS

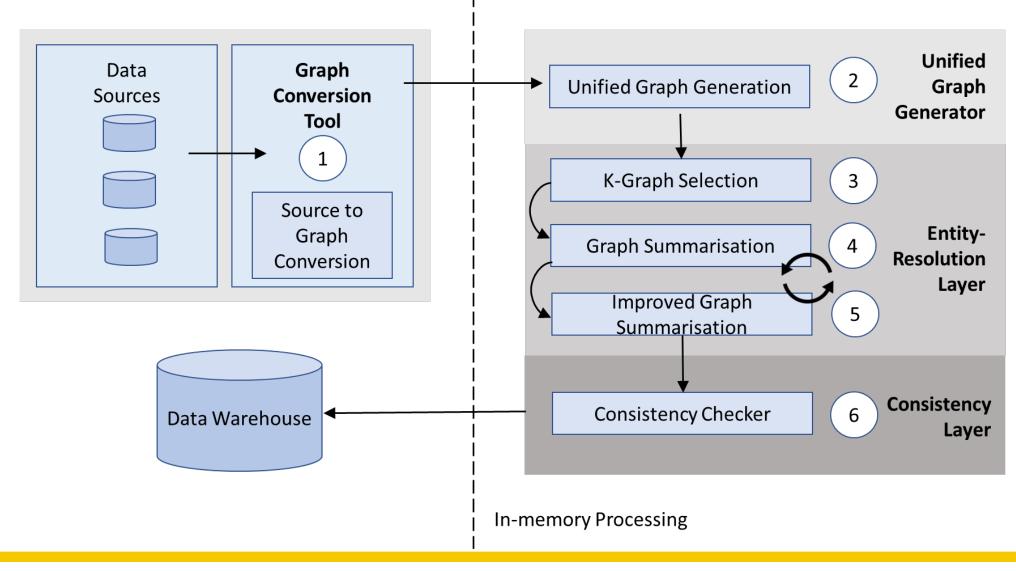
- These dealerships have deployed Dealer Management Systems (DMS) to manage:
 - Vehicle sales stock
 - Customer leads
 - Service appointments
 - Online advertising appointment
- DMS are Proprietary Software provided by limited market leaders for automotive dealerships closed source software
- Legacy Systems ~ approx. four decades old
 - Some of these DMS are quite old but limited choice forces dealerships to continue usage
- In order to extract data Windows based license is required ODBC
 - Currently no support for Linux based licenses thus limitation to design systems around this requirement

Data Flow – Reporting



Issues in data integration

- Dealerships require integration of data from DMS and other data sources (telephony, ANPR, edge devices etc.)
- VPN links cost
 - Solution is to set up an edge device that cuts down the VPN link's cost and send updated data only (lower bandwidth and processing cost)
- Issues:
 - Volume and velocity of change
 - Data consistency as these sources evolve

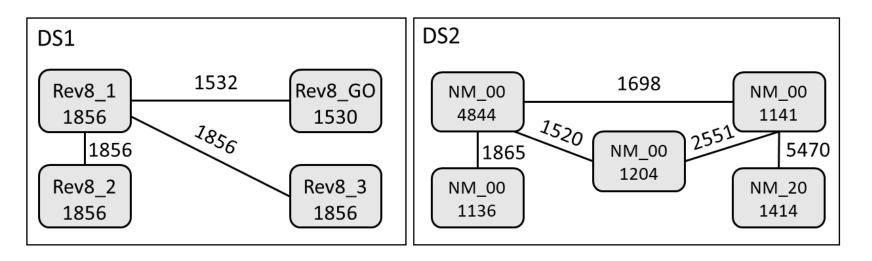


Graph-based Data Integration

Summarised Architecture

Data-sets for Evaluation

Datasets	Datasets Type		No. of Edges
Data-set 1	Real World	350	2875
Data-set 2	Real World	11600	65425
Data-set 3 Real World		25767	98598
Data-set 4 Real World		42494	109271
Data-set 5 Synthetic		65536	1048576
Data-set 6 Synthetic		131072	2097152


- We have collated data from three major DMS systems, Drive, Rev8 and Pinnacle
- The synthetic datasets are generated for scales 16 and 17 with average degree of 14 per vertex.
- The structures within these synthetic graphs are similar to the ones present in automotive data sets to ensure uniformity across the testbeds and results.

*DataSynth - Arasu, A., Kaushik, R. and Li, J., 2011. DataSynth: Generating synthetic data using declarative constraints. Proceedings of the VLDB Endowment, 4(12), pp.1418-1421.

*Graph500 RMAT - Murphy, R.C., Wheeler, K.B., Barrett, B.W. and Ang, J.A., 2010. Introducing the graph 500. Cray Users Group (CUG), 19, pp.45-74.

Entity Resolution Evaluation

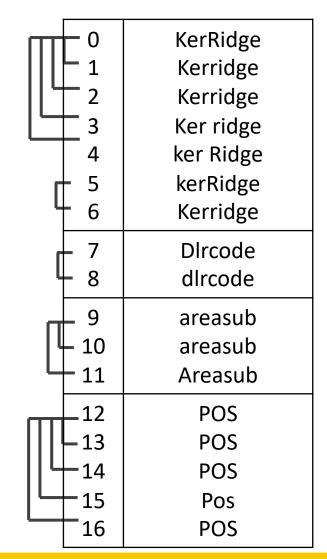
Structures within DS1 and DS2 along with the number of links and entities

- A subset of the previously mentioned data-sets is presented for evaluation
- We begin by splitting these datasets into two named as DS1 gathered from Rev8 DMS and DS2 gathered from the Drive DMS.

						. (
	Cluster Size Clust	le itie l	Decomposition			
		Clustering	Type-based	Sim-based merge	Cluster Merge	
	1	-	55	186	169	
	2	-	120	167	164	
	3	130	185	232	233	
	4	1690	1720	1604	1608	

Cluster Sizes in DI Phases

Cluster sizes in integration phases for evaluation dataset - DS1


Cluster sizes in integration phases for evaluation dataset – DS2

Cluster Size	Initial	Decomp		
	Clustering	Type-based	Sim-based merge	Cluster Merge
1	-	44	353	327
2	720	796	841	833
3	756	771	818	805
4	1071	1013	439	1085
5	574	570	423	436

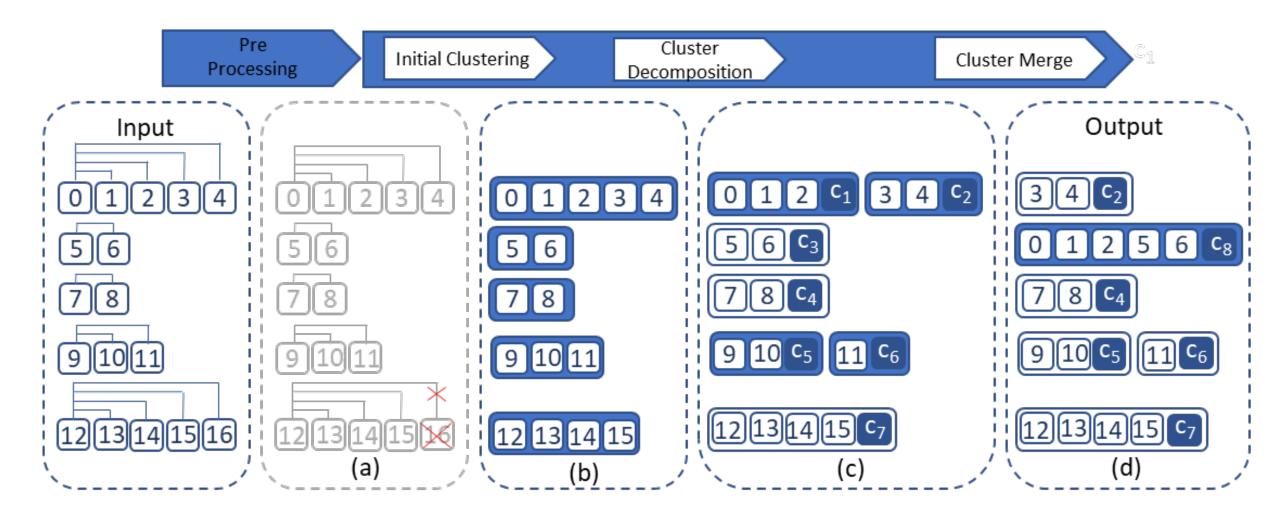
id	label	source	type	
0	KerRidge	Drive	DMS	
1	Kerridge	Rev8	DMS	
2	Kerridge	Pinnacle	DMS	
3	Ker ridge	Drive	DMS	
4	ker Ridge	Pinnacle	-	
5	kerRidge	Rev8	DMS	
6	Kerridge	Rev8	DMS	
7	Dlrcode	Drive		
8	dlrcode	Rev8	DLR	
9	areasub	Pinnacle	Sub-category	
10	areasub	Rev8	Sub-category	
11	Areasub	Rev8	Sub-category	
12	POS	-	TabCode	
13	POS	Drive	TabCode	
14	POS	Rev8	TabCode	
15	Pos	Pinnacle	TabCode	
16	POS	Drive	TabCode	

Sample entities from datasets to express Entity Clustering

SplitMerge for Entity Resolution in Graphs

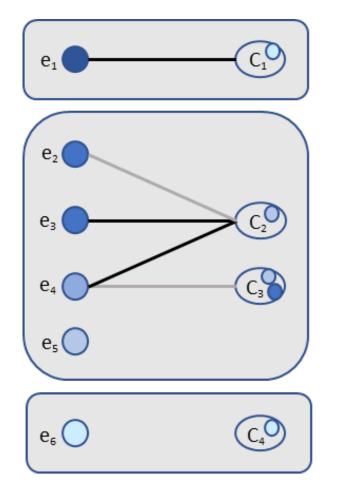
Algorithm 5: SplitMerge Clustering Algorithm

```
Input: Set of entities e from n sources, edge set d, simFun f<sub>sim</sub>, thresholds
         t_s, t_m
Output: Set of clusters C
C \leftarrow \emptyset
 e, l \leftarrow
 preprocessing(e,l,f<sub>sim</sub>) /*preprocessing*/
 C_{init} \leftarrow \text{computeConnectedComponents}(e,l)
 l_c \leftarrow \text{computeLinksSim}(C_{int}, f_{sim})
 C - int \leftarrow refineConnectedComponents(C_{int}, L_c) /*initial clustering*/
 foreach c \in C_{int} do /*cluster decomposition*/
 C_{split} \leftarrow \text{groupByType}(c,L_c)
 C_{split} \leftarrow simBasedRefinement(C_{split}, L_c, t_s)
 C_{split} \leftarrow createRepresentatives(C_{split})
 C \leftarrow C \cup C_{split}
 CM \leftarrow computeClusterSim (C, f_{sim}, t_m) / *create cluster mapping CM * /
 while CM \neq \emptyset do
 (c_1, c_2) \leftarrow CM.getBestMatch()
 c_m \leftarrow \text{mergeClusters}(c_1, c_2) C \leftarrow C c_1, c_2 \cup c_m / \text{*cluster merge*} /
 CM \leftarrow adaptMapping(CM,C,c_m,c_1,c_2,f_{sim},t_m)
 return C
```


SplitMerge Phases:

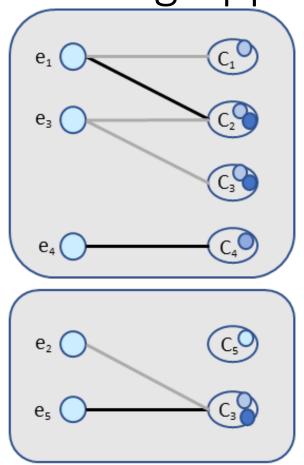
Note: f_{sim} = Similarity function; t_s , t_m = similarity threshold

- 1. Preprocessing
 - property values required for similarity computation are normalized
- 2. Initial Clustering
 - Connected components
 - In order to phase out deduplicated entities and the refineConnectedComponents (Line 5) connected components is used on one entity per source.
- 3. Cluster Decomposition two main approaches
 - Split clusters based on inconsistent semantic types
 - clusters containing inadequate similarity to other cluster members are split up
- 4. Cluster Merge
 - merge clusters that range below the maximally possible cluster size k



SplitMerge Example continued...

Incremental Clustering Approach


(a) Root Approach

Algorithm 8: Set-based incremental entity clustering - root approach **Input:** Existing clusters C_{exist} , edge set l_c , split threshold t_s **Output:** Set of clusters *C*_{result} $C_{new} \leftarrow \text{createInitialClusters}(E_{new}, f_{blocking})$ $C_{exist} \leftarrow addBlockingInfo(C_{exist}, f_{blocking})$ for block i in Parallel do $L_i \leftarrow \text{getClusterCandidates} (C_{exist}, C_{new}, f_{sim}, t_{min})$ $L_{sorted} \leftarrow sortLinkSim(L_i)$ **foreach** (c_{new} , c_{exist} ,sim) $\in L_{sorted}$ **do** if $c_{exist} \notin c_{new}$ then continue() **if** isSrcConsistent(*c_{new}*,*c_{exist}*) **then** c_{exist} .add (c_{new}) C_{new} .remove(c_{new}) **return** $C_{exist} \cup C_{new}$

- Two different scenarios for cluster generation:
 - root approach and
 - source-specific approach
- (colours signify various data sources, it is assumed that all the links exceed the minimal similarity threshold)

Incremental Clustering Approach

(b) Source-specific Approach

Algorithm 5: SplitMerge Clustering Algorithm

Input: Set of entities *e* from *n* sources, edge set *d*, simFun f_{sim} , thresholds

 t_s, t_m

Output: Set of clusters *C*

 $C \leftarrow \emptyset$

 $e, l \leftarrow$

preprocessing(*e*,*l*,*f*_{sim}) /*initial clustering*/

 $C_{init} \leftarrow \text{computeConnectedComponents}(e,l)$

 $l_c \leftarrow \text{computeLinksSim}(C_{int}, f_{sim})$ $C - int \leftarrow \text{refineConnectedComponents}(C_{int}, L_c) / \text{*initial clustering}*/$

 $c = int \leftarrow$ refine Connected Components (C_{int}, L_c) / "initial clustering" foreach $c \in C_{int}$ do /*cluster decomposition*/

 $C_{split} \leftarrow \text{groupByType}(c,L_c)$

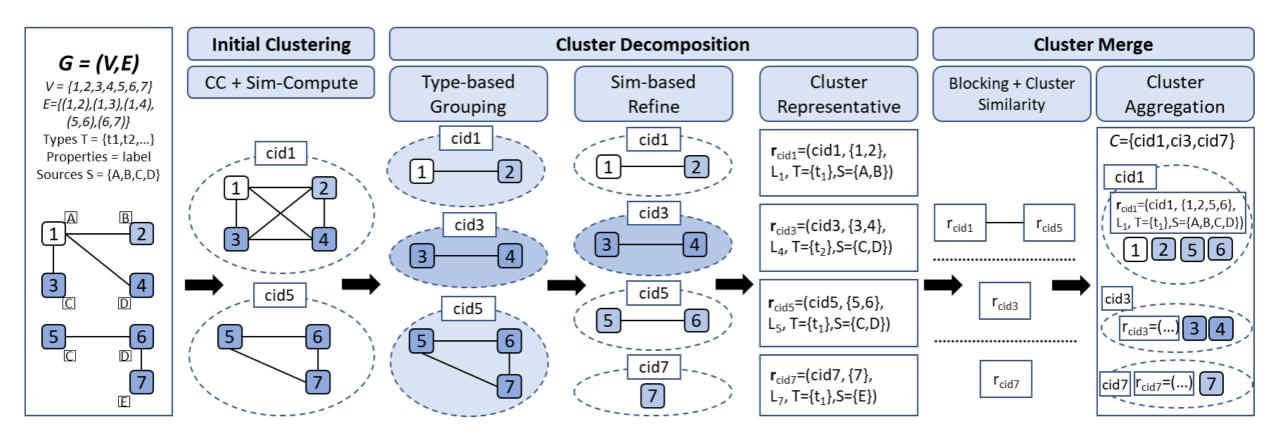
 $C_{split} \leftarrow simBasedRefinement(C_{split}, L_c, t_s)$

 $C_{split} \leftarrow \text{createRepresentatives}(C_{split})$

 $C \leftarrow C \cup C_{split}$ CM \leftarrow computeClusterSim (C, f_{sim} , t_m) /*create cluster mapping CM */

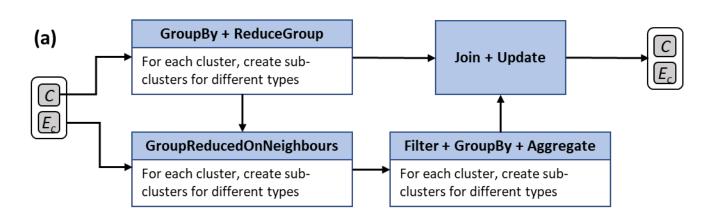
while $CM \neq \emptyset$ do

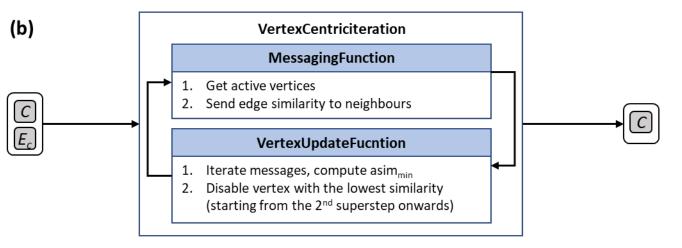
```
(c_1,c_2) \leftarrow CM.getBestMatch()
c_m \leftarrow mergeClusters(c_1,c_2) C \leftarrow C \ c_1,c_2 \cup c_m \ /*cluster merge*/
```


 $CM \leftarrow adaptMapping(CM,C,c_m,c_1,c_2,f_{sim},t_m)$

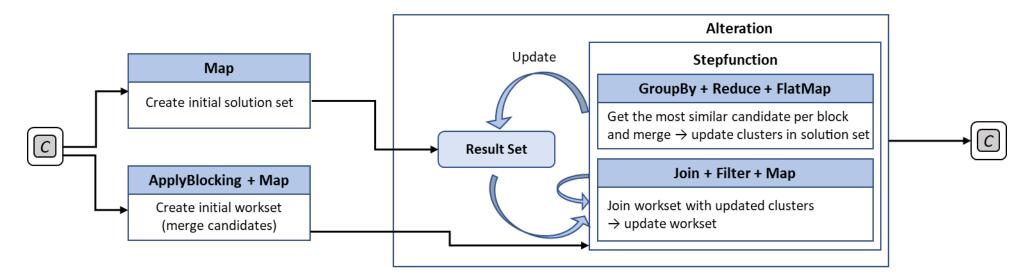
return C

The algorithm resolves source-consistent candidate links between the newer entities and existing set of clusters in parallel with partitioned blocks.




Distributed Clustering

Cluster Decomposition - Distributed ER



- Sub-workflows for type-based grouping shown in (a) and similarity-based refinement in (b)
- The first step in decomposition of the cluster is to break the clusters into sub-clusters based on the compatibility of property types (Type-based grouping).
- The second step is to decompose these clusters using non-similar entities from clusters based on the step Similarity-based refinement.

Cluster Merge – Distributed ER

- Spark's iterative operative in addition to user-defined functions are used to address the final merge stage.
- Clusters with high similarity which as usually small are aggregated iteratively into large clusters.
- The creation of representatives for each of the cluster enables to reduce the number of potential entities for the merge step.

Evaluation

- Evaluation of these data-sets are based on dynamic graph queries. For each dataset we grouped the queries in five sets (i.e. ten queries per set): each set is homogeneous with respect to its complexity of the queries (e.g. number of connected components, number of results and so on.).
- For instance, referring to integrated Rev8 data-sets, the first set of queries searches information about services while the second set of queries seeks information about sales.
- For each set, we ran the queries ten times and measured the average response time.

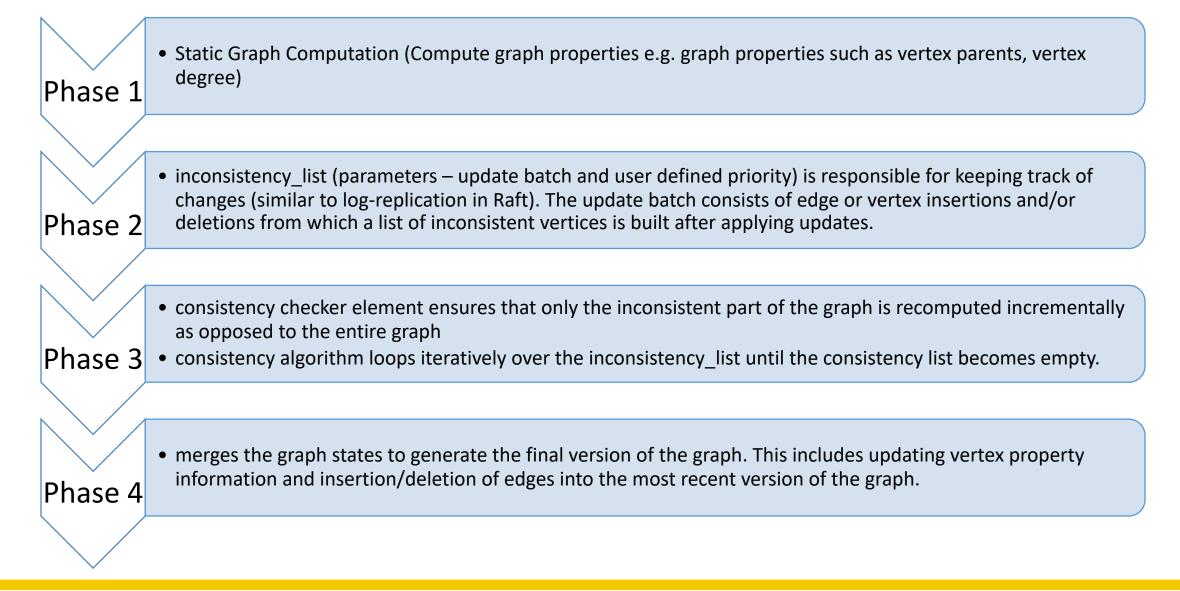
Cluster Sizes and Configuration Results

	Data-set	Node Properties	No. of Nodes	No. of Sources
DS1-A1	Drive DOC		5,079	4
DS2-C1			11,600	5
DS2-C2			42,949	5
DS3-N1	Pinnacle	PinCode	131,072	5
DS3-N2		CustRef	500,000	10

Evaluation data-set details

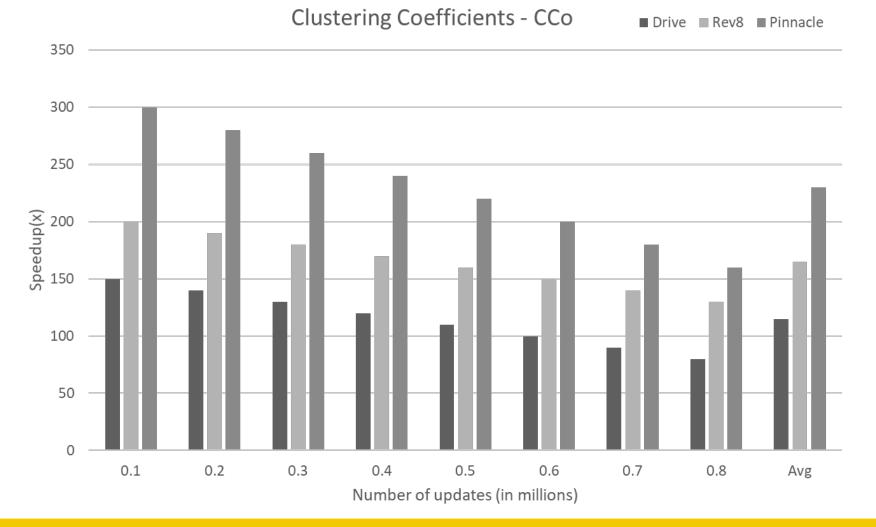
	Perfect Result		Best configuration -results		
	# of clusters	of clusters # of edges conf(t_min,bk) # of correct		# of correct edges	F-measure
DS1-A1	790	6497	conf(0.4,1)	6,207	0.981
DS2-C1 DS2-C2	5000 20000	10,340 39,321	conf(0.5,1) conf(0.7,1)	9,589 36,956	0.953 0.846
DS3-N1 DS3-N2	110,440 350,960	101,843 619,528	conf(0.7,6) conf(0.7,6)	100,057 513,975	0.804 0.795

Evaluation of Static vs Dynamic Clustering


DS2 - C2	Incren	Incremental		atic
032 - C2	Root	Source	CLIP	SplitMerge
run time (sec)	4210	1052	1859 + 72	1859 + 732
Precision recall	0.765 0.865	0.897 0.839	0.868 0.819	0.848 0.833
F-measure	0.812	0.879	0.855	0.845

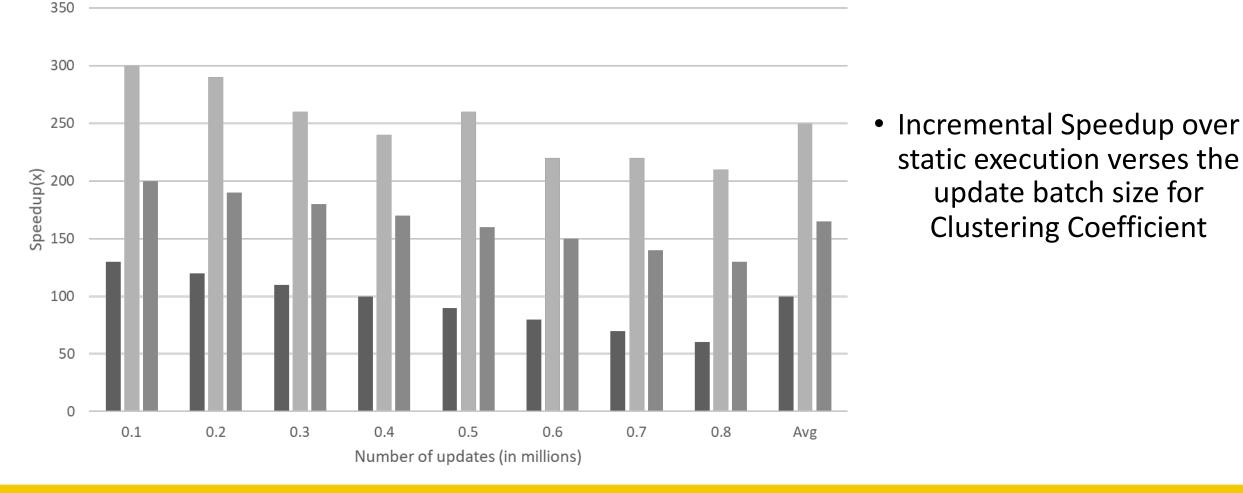
- Data Quality and Run time for:
 - DS2-C2
 - DS3-N1

DS3 – N1	Incremental		emental Static	
D33 - NI	Root	Source	CLIP	SplitMerge
run time (sec)	642	221	110+105	110+763
Precision recall	0.565 0.844	0.817 0.821	0.860 0.819	0.789 0.862
F-measure	0.676	0.819	0.846	0.832



Consistency Phases

Evaluation – static vs incremental computation (CCo)


Incremental Speedup over static execution verses the update batch size for Clustering Coefficient

Evaluation – static vs incremental computation (CC)

Connected Components - CC

■ Drive ■ Rev8 ■ Pinnacle

Conclusion

- Entity Resolution techniques combined with graphs result in quicker and scalable data integration
- Test the efficacy of the approach on other domains currently tested approach on clinical datasets (limitations due to limited public data availability)
- Further enhance the solution to provide performance and scalability guarantees
- Employ ML and AI techniques to automate the report generation process within a cloud-based environment

Thank you! Questions?

b.arshad@derby.ac.uk

🗊 @bilalarshadali

