Pricing Python Parallelism

A Dynamic Language Cost Model for Heterogeneous Platforms

Dejice Jacob, Phil Trinder, Jeremy Singer

University of Glasgow

25/11/2020

Umver51ty
& of Glasgow

School of

Computing Science

Dejice Jacob, Phil Trinder, Jeremy Singer Pricing Python Parallelism 25/11/2020 1/13

Heterogeneous architectures

CPU

Dejice Jacob, Phil Trinder, Jeremy Singer

GPU

Pricing Python Parallelism

Multiprocessor 1 Multiprocessor 2
— — -
— — -
— - -~ -
Multiprocessor 3 Multiprocessor 4
- - - - -
— — —
— — —
. L4
. .
. .
. L]
Multiprocessor 13 Multiprocessor 14
p— p— - -
— — — —
T - + -
& = = = 9ae
25/11/2020 2/13

ALPyNA

ALPyNA Novelties
@ Staged parallelisation - Hybrid Static/Dynamic approach
@ Preserving static analysis to aid runtime discovery of parallelism
@ Runtime introspection of types and dependences
@ Automatic loop parallelisation in a dynamic language

Novelties of ALPyNA Cost Model (ACM)

Analytical cost model.

Parametric — should account for differing hardware characteristics.

Dynamic — sequential /parallel code structure can change.

Light weight — JIT environment does not tolerate prediction latency.

Dejice Jacob, Phil Trinder, Jeremy Singer Pricing Python Parallelism 25/11/2020 3/13

Runtime dependence analysis

import numpy as np

def In_func(arg.a, k,limits)
im, jm = limits
for i in range(0,im,1):
for j in range(0,jm,1):
Statement — S1
arg_ali+k,j] = arg-al[i,j] + 4
Statement — S2
arg_a[i+16,j] = arg_ali,.j]

Dejice Jacob, Phil Trinder, Jeremy Singer Pricing Python Parallelism 25/11/2020 4/13

Runtime dependence analysis

(im,jm) < (32,1024) and (k) < 64

Stmt S2 Dﬁi
import numpy as np
1
def In_func(arg.a, k,limits) k
im, jm = limits Stmt _S1
for i in range(0,im,1): y
for j in range(0,jm,1): —
Statement — Sl (im,jm) < (32,1024) and (k) < (8)
arg_alitk,j] = arg_ali,j] + 4
Statement — S2 Stmt 81 _2b;
arg_a[i+16,j] = arg_a[i,j] é%;ﬁf
Stmt S2 Dﬁi

y
Dejice Jacob, Phil Trinder, Jeremy Singer Pricing Python Parallelism 25/11/2020 4/13

ACM Interpreter and CPU modelling

@ Absolute cost model: predicts runtime

@ Relative cost model: compares runtimes

Interpreter loop nest

mt - lnt(s) H 'C

feD(s)

1nt g Cmt

se&(f)

CPU loop nest

Ccpu(s) - /cpu(s) H ‘C(f)

cpu

feD(s)

Z Ccpu

se&(f)

Dejice Jacob, Phil Trinder, Jeremy Singer

Pricing Python Parallelism

25/11/2020

GPU - SIMT Architecture

Dejice Jacob, Phil Trinder, Jeremy Singer

Blodk (1, 0) || Block (2, 0)

Blodk (1, 1)

o
Block (1, 1)

Figure: source:NVIDIA

Pricing Python Parallelism

25/11/2020

DA
6/13

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy

Modelling GPU execution

Loop identification and splitting
@ loops executed sequentially on CPU: Dgeq(s)
@ loops executed on GPU: Dp,(s)

o loops executed with parallel threads: Dy, (s)
o loops executed sequentially within kernels: Dgpy(s)

Cost of parallel execution on GPU

Aexec(s):{%] xg.‘i.wx I cnHx [«)
fEDgou(s) FEDgpu(s)

g= [g

fEDgpu(s)

Dejice Jacob, Phil Trinder, Jeremy Singer Pricing Python Parallelism 25/11/2020 7/13

Accounting for GPU invocation

e—e Cki - kernel invocation cost
+—4 Cgpu - kernel execution cost

Cki erpssover (Ay)

Execution Time(ms)

Profiling GPU kernel invocation cost

GPU - AM(num of threads)

Smaller GPU workloads are executed faster on the GPU than the interpreter can dispatch a

new kernel; the GPU is starved for work.
Dejice Jacob, Phil Trinder, Jeremy Singer

Pricing Python Parallelism

25/11/2020

8/13

Calibration to calculate relative cost

Ideal compiled CPU execution relative to VM

Iint(s)
p= 1
() .
Relative cost of GPU execution incorporates terms to account for CPU and (shared) GPU
caches
lepu(s) . fepu X (LCopu/0) 2)
e 15) e 2 L
o — cache sharing factor for GPU. CPU is single threaded.
Derived GPU per core performance
lint(s)
XY 3
lgpu (5) G)

Dejice Jacob, Phil Trinder, Jeremy Singer Pricing Python Parallelism 25/11/2020 9/13

Experimental Results — prediction

mispredict penalty

mispredict penalty

IS

black-scholes

cpu
cpu
cpu
cpu gpu gpu gpu gpu gpu gpu
X e B¢ 56 ¢ AN oM gh e
gemver
cpu
CPu CPU CPU Cpu Cpu CPU CPU Cpu cpu cpu Cpu
p—
B 46 a1 oh 498 g6 oyl gk % e ek ek
R T SNV A A i N e T S

Dejice Jacob, Phil Trinder, Jeremy Singer

mispredict penalty

mispredict penalty

performance

emm
s g9
4
3
gpu

2

cpu cpu cpu cpu gpu gpu gpu
1
o

16 32 o 28 50 A2 % 2%
B I I R S S

s mandelbrot
4
3
2

cpu cpu cpu cpu cpu gpu gpu gpu
1
o

[16 £ o 2% 56 A2 1%
g% 16% n* ob* \1$*X 7§6*1 "17_*5 AK*

Pricing Python Parallelism

25/11/2020 10/13

Experimental Results — misprediction range

Exec Time (sec)

black-scholes

— cpu-perf --- pypy-perf]
| —— gpu-perf =
I N T - RS N M aw e e
gemver
| — cpu-perf --- pypy-perf —
—— gpu-perf T

Exec Time (sec)

Dejice Jacob, Phil Trinder, Jeremy Singer

or® 10 »® R * a“*sﬁqs*xﬁ.e *1",(11*""1%*%1**# a‘*“ s**ﬂ: c«p‘w*

Exec Time (sec)
g

Exec Time (sec)

gemm
— cpu-perf --- pypy-perf
| — gpu-perf
© 32 & i3 © 2 A3 AS
B T S B AT L A e o ?
mandelbrot
| — cpuperf --= pypyperf —
—— gpu-perf -

Pricing Python Parallelism

RCSeC

25/11,/2020

DAl
11/13

Conclusion

© A lightweight analytical cost model to select the faster compute device for a loop nest in
a heterogeneous architecture.

© Adapts to runtime dependence analysis and code generation.
© Minimal install time profiling required

@ Overall 13.6% mean slowdown due to mispredictions.

© Overall 14.3% mean misprediction across iteration domain sizes

Dejice Jacob, Phil Trinder, Jeremy Singer Pricing Python Parallelism 25/11/2020 12/13

Conclusion

Publications
@ DLS-20 — doi:10.1145/3426422.3426979
DLS-19 — doi:10.1145/3359619.3359743
ARRAY-19: doi:10.1145/3315454.3329956
Source: https://bitbucket.org/djichthys/alpyna/src/master

Engineering and
e Physical Sciences
4 Research Council

Dejice Jacob, Phil Trinder, Jeremy Singer Pricing Python Parallelism 25/11/2020 13/13

https://doi.org/10.1145/3359619.3359743
https://doi.org/10.1145/3315454.3329956
https://bitbucket.org/djichthys/alpyna/src/master
https://bitbucket.org/djichthys/alpyna/src/master

