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Heterogeneous architectures
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ALPyNA

ALPyNA Novelties
@ Staged parallelisation - Hybrid Static/Dynamic approach
@ Preserving static analysis to aid runtime discovery of parallelism
@ Runtime introspection of types and dependences
@ Automatic loop parallelisation in a dynamic language

Novelties of ALPyNA Cost Model (ACM)

Analytical cost model.

Parametric — should account for differing hardware characteristics.

Dynamic — sequential /parallel code structure can change.

Light weight — JIT environment does not tolerate prediction latency.
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Runtime dependence analysis

import numpy as np

def In_func(arg.a, k,limits)
im, jm = limits
for i in range(0,im,1):
for j in range(0,jm,1):
# Statement — S1
arg_ali+k,j] = arg-al[i,j] + 4
# Statement — S2
arg_a[i+16,j] = arg_ali,.j]
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Runtime dependence analysis

(im,jm) < (32,1024) and (k) < 64

Stmt S2 Dﬁi
import numpy as np
1
def In_func(arg.a, k,limits) k
im, jm = limits Stmt _S1
for i in range(0,im,1): y
for j in range(0,jm,1): —
# Statement — Sl (im,jm) < (32,1024) and (k) < (8)
arg_alitk,j] = arg_ali,j] + 4
# Statement — S2 Stmt 81 _2b;
arg_a[i+16,j] = arg_a[i,j] é%;ﬁf
Stmt S2 Dﬁi

y
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ACM Interpreter and CPU modelling

@ Absolute cost model: predicts runtime

@ Relative cost model: compares runtimes

Interpreter loop nest
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GPU - SIMT Architecture
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-hierarchy

Modelling GPU execution

Loop identification and splitting
@ loops executed sequentially on CPU: Dgeq(s)
@ loops executed on GPU: Dp,(s)

o loops executed with parallel threads: Dy, (s)
o loops executed sequentially within kernels: Dgpy(s)

Cost of parallel execution on GPU

Aexec(s):{%] xg.‘i.wx I cnHx [ «)
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Accounting for GPU invocation

e—e Cki - kernel invocation cost
+—4 Cgpu - kernel execution cost

Cki erpssover (Ay)

Execution Time(ms)

Profiling GPU kernel invocation cost

GPU - AM(num of threads)

Smaller GPU workloads are executed faster on the GPU than the interpreter can dispatch a

new kernel; the GPU is starved for work.
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Calibration to calculate relative cost

Ideal compiled CPU execution relative to VM

Iint(s)
p= 1
() .
Relative cost of GPU execution incorporates terms to account for CPU and (shared) GPU
caches
lepu(s) . fepu X (LCopu/0) 2)
e 15) e 2 L
o — cache sharing factor for GPU. CPU is single threaded.
Derived GPU per core performance
lint(s)
XY 3
lgpu (5) G)
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Experimental Results — prediction

mispredict penalty
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Experimental Results — misprediction range

Exec Time (sec)
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Conclusion

© A lightweight analytical cost model to select the faster compute device for a loop nest in
a heterogeneous architecture.

© Adapts to runtime dependence analysis and code generation.
© Minimal install time profiling required

@ Overall 13.6% mean slowdown due to mispredictions.

© Overall 14.3% mean misprediction across iteration domain sizes
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Conclusion
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