The Role of Reactive and
Event-Driven in Microservices

Dr. Clement Escoffier Dr. Julien Ponge

Senior Principal Software Engineer Principal Software Engineer

Microservices are all about
distributed systems...

OOOOOOOO

It's all about distributed systems

O

@

3 Source:
Insert source data here
Insert source data here
Insert source data here

\"

7
N

O
J
O

V0000000

& RedHat

HTTP =>STRONG COUPLING

\OZC\E

OOOOOOOO

X

HTTP =>UPTIME COUPLING

N
8§O

O

,8-€3
L

OOOOOOOO

THE RISE OF CIRCUIT BREAKERS

b3 $

OOOOOOOO

THE BENEFITS OF MESSAGING

Elasticity
Virtual
Ada'resses
O @’ \l/- ql/l\ Resilience

Non-B ock/mg ®
Message Passing

REACTIVE => RESPONSIVE

ﬂm

| WIC) RS |

[E MESSACE vﬁvm} j‘

OOOOOOOO

REACTIVE: ADIFFERENT CONCURRENCY MODEL

- Non-Blocking 1/0 J
MY
NS

ertlng asynchronous

It's all about expressing
continuation

OOOOOOOO

12

CALLBACKS

Simple to understand

Reflect the event-driven nature of the code
Hard to compose

Lead to callback-hell

vertx.createHttpServer()

.requestHandler(req -> // Async reaction
req.response().end("Reactive Greetings")
)

.listen(8080, ar -> { // Async operation
// Continuation...
1)

V0000000 ‘ Red Hat

FUTURES & PROMISES

More composable than callbacks
Built-in support in many languages
Don't reflect the event-driven nature

Limited to single write (multiple read)

CompositeFuture.all(

fetchTemperature(3000),

fetchTemperature(3001),

fetchTemperature(3002))

.flatMap(this: :sendToSnapshot)

.onSuccess(data -> request.response()
.putHeader("Content-Type", "application/json")
.end(data.encode()))

.onFailure(err -> {
logger.error("Something went wrong", err);
request.response().setStatusCode(500).end();

1)

V0000000 ‘ Red Hat

REACTIVE PROGRAMMING

client.rxGetConnection() // Single(async op)

Use data stream as primary construct .flatMapPublisher(conn -»

Laziness : conn
_ : .rxQueryStream("SELECT * from PRODUCTS")
Back Pressure (Reactive Streams) 5 .flatMapPublisher(SQLRowStream: :toFlowable)

.doAfterTerminate(conn::close)
) // Flowable of Rows

Functional - hard to grasp é .map(Product::new) // Flowable of Products
.subscribe(System.out: :println);

Not everythingis a stream

Too many operators - Nomad Hell

V0000000 ‘ Red Hat

VIRTUAL THREAD AND COROUTINES

Write async code in a synchronous fashion
e Code rewriting (Quasar, Kotlin, JS)
e Runtime support (Loom)
Easy to reason about
Requires runtime support
Not event-driven
No real stream and Back-Pressure support
(see channels, blocking queues, etc)
Integration with the reactive and

non-blocking ecosystem can be challenging

Router router = Router.router(vertx);
router.route().handler(rc -> {
Thread.startVirtualThread(() -> { rc.next(); });
1)
router.get("/").handler(rc -> {
HttpResponse<Buffer> response = client.getAbs(...)
.sendAndAwait();

rc.response().end(response.bodyAsString());

1)

V0000000 ‘ Red Hat

ROADMAP

Objective: integration in Quarkus (https./quarkus.io)

LV INTUITIVE EVENT-DRIVEN REACTIVE PROGRAMMING L STRUCTURED AND MANAGED CONCURRENCY
e Based on the idea of reactive e Based on the idea of coroutine
programming o Better integration with reactive
o More event-driven ecosystem (Eclipse Vert.x)
o APl navigability o Provide higher-level abstraction to
o Noteverything is a stream compose actions

e SmallRye Mutiny:
https.//smallrye.io/smallrye-mutiny/

16
V0000000 ‘ Red Hat

O
O
=5
o
3
2,
0
(1]
(2]
=2
o
=
=
Q
%
o
=
o
=
=5
=3
(0]

Thank you

Red Hat is the world’s leading provider of enterprise
open source software solutions. Award-winning support,
training, and consulting services make Red Hat a trusted
adviser to the Fortune 500.

m linkedin.com/company/red-hat n facebook.com/redhatinc

E youtube.com/user/RedHatVideos u twitter.com/RedHat

‘ Red Hat

