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Moraru, Iulian, David G. Andersen, and Michael Kaminsky. "There is more consensus in egalitarian 
parliaments." Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. 
2013.
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Aims
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Evaluate arbitrary deployments

Heterogeneous hosts

Comprehensive failure analysis



Mininet deployment emulation
● Network emulation via network namespaces and Open vSwitch

● Heterogeneous host emulation via cgroups

host h1 namespace host h2 namespaceroot namespace

h1-eth1 s1-eth0 s1-eth1 h2-eth1
veth pair veth pair

/bin/etcd /bin/etcdOpen vSwitch
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Mininet emulated network

etcd node

etcd node

etcd node client 
spawner

How we emulate topologies

Physical datacenter

etcd node etcd nodeetcd node

client 
gateway

clients
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Load generator and client spawner

load 
generator

Client spawner

distributed 
key-value 

service

client pool
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Load generator and client spawner

load 
generator
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key-value 
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Validation test setup
● Tested using etcd v3.5.2
● N etcd nodes, one client spawner all 

connected to a central switch
● No limits on bandwidth/latency
● Just write requests
● Keys in the range 1-10 

uniformly distributed
● 10 Byte keys and values
● Leader failure via SIGKILL
● 1000 closed loop clients in client pool

etcd node

etcd node

etcd node client 
spawner
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The target throughput of etcd against what it actually achieved, for [1,3,5,7,9] 
nodes.
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etcd: Latency at achieved throughputs using [1,3,5,7,9] servers
5th, 50th and 95th percentiles shown. 16



etcd: Cumulative density plot of latency for [1,3,5,7,9] nodes at 5k ops/s
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etcd: trace of leader failure for a 3 node configuration
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● Data dependencies between requests

● Failure trace artifacts from client pool approach

● Limited to tree topology

Currently out of scope / Limitations
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Upcoming work
● Extend to new systems:

○ Custom Multi-Paxos and Raft implementation

● Failure and recovery analysis (In general cases and specific case studies)
● New network topologies
● Heterogeneous host deployments
● Data dependencies
● Other workloads
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Latency cdf of ocamlpaxos vs etcd v3.5.2 on an ssd at 8k ops/s
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Thanks for listening!
Any questions?
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