
Resolving Consensus
Benchmarking distributed key value stores on 

arbitrary network configurations

1

Chris Jensen (University of Cambridge, cjj39@cam.ac.uk)



Prior Work

● Specific installations tested 

● Homogenous hosts 

● Singular failure trace 

2



Aims

● Specific installations tested 

● Homogenous hosts 

● Singular failure trace 

3

Evaluate arbitrary deployments



Aims

● Specific installations tested 

● Homogenous hosts 

● Singular failure trace 

4

Evaluate arbitrary deployments

Heterogeneous hosts



Moraru, Iulian, David G. Andersen, and Michael Kaminsky. "There is more consensus in egalitarian 
parliaments." Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. 
2013.

5



Aims

● Specific installations tested 

● Homogenous hosts 

● Singular failure trace 

6

Evaluate arbitrary deployments

Heterogeneous hosts

Comprehensive failure analysis



Mininet deployment emulation
● Network emulation via network namespaces and Open vSwitch

● Heterogeneous host emulation via cgroups

host h1 namespace host h2 namespaceroot namespace

h1-eth1 s1-eth0 s1-eth1 h2-eth1
veth pair veth pair

/bin/etcd /bin/etcdOpen vSwitch

7



Mininet emulated network

etcd node

etcd node

etcd node client 
spawner

How we emulate topologies

Physical datacenter

etcd node etcd nodeetcd node

client 
gateway

clients

8



Load generator and client spawner

load 
generator

Client spawner

distributed 
key-value 

service

client pool

9

load generator



Load generator and client spawner

load 
generator

Client spawner

distributed 
key-value 

service

1:Preload client pool

10

load generator



Load generator and client spawner

load 
generator

Client spawner

distributed 
key-value 

service

1:Preload

2a:Start

client pool

11

load generator



Load generator and client spawner

load 
generator

Client spawner

distributed 
key-value 

service

1:Preload

2a:Start

2b:Execute

client pool

12

load generator



Load generator and client spawner

load 
generator

Client spawner

distributed 
key-value 

service

3:Collate

1:Preload

2a:Start

2b:Execute

client pool

13

load generator



Validation test setup
● Tested using etcd v3.5.2
● N etcd nodes, one client spawner all 

connected to a central switch
● No limits on bandwidth/latency
● Just write requests
● Keys in the range 1-10 

uniformly distributed
● 10 Byte keys and values
● Leader failure via SIGKILL
● 1000 closed loop clients in client pool

etcd node

etcd node

etcd node client 
spawner

14



The target throughput of etcd against what it actually achieved, for [1,3,5,7,9] 
nodes.

15



etcd: Latency at achieved throughputs using [1,3,5,7,9] servers
5th, 50th and 95th percentiles shown. 16



etcd: Cumulative density plot of latency for [1,3,5,7,9] nodes at 5k ops/s
17



etcd: trace of leader failure for a 3 node configuration
18



● Data dependencies between requests

● Failure trace artifacts from client pool approach

● Limited to tree topology

Currently out of scope / Limitations

19



Upcoming work
● Extend to new systems:

○ Custom Multi-Paxos and Raft implementation

● Failure and recovery analysis (In general cases and specific case studies)
● New network topologies
● Heterogeneous host deployments
● Data dependencies
● Other workloads

20



Latency cdf of ocamlpaxos vs etcd v3.5.2 on an ssd at 8k ops/s
21



Thanks for listening!
Any questions?

22

https://github.com/Cjen1/Resolving-Consensus
Chris Jensen (cjj39@cam.ac.uk)
Daniel Sääw (dks28@cam.ac.uk)
Heidi Howard (hh360@cam.ac.uk)
Richard Mortier (richard.mortier@cl.cam.ac.uk)


