Popcorn Linux OS and Compiler
Framework:

lessons from 7 years of research,
development, and deployments

Antonio Barbalace, Pierre Olivier, Binoy Ravindran

From my old slide sets (2013) ...

Heterogeneity Trends: Integration

\

X%% ARN

Lk —

Developing 64-bit ARM
cores alongside new
64-bit x86 cores

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

From my old slide sets (2013) ...
\

Heterogeneity Trends:

- ; X‘% ARN

Ll —

Developin, ~4-bit ARM
cores alongs, ™ new
64-bit x86 core

OS-capable

general \\.\“ @

purpose ‘6\‘ —

% ;T..:" 0

OTessOt

e———

—

Special purpose

=

Each image is Copyright of the respective Company or Manufacturer. Images are used here for educational purposes.

Popcorn Linux and Compiler Framework
Project
e Started at Virginia Tech, Blacksburg, VA, mid-2012

* Binoy Ravindran, Antonio Barbalace

* Targets platforms with multiple groups of general-purpose processing units

* Non-cache-coherent
* Microarchitectural or ISA heterogenous

* |nitial goal
e Extend the multiple kernel OS design (Barrelfish) to Linux
* Provide the same OS and programming environment among processing units

* OS and compiler provide SMP functionalities on non-SMP platforms

Was that worth? How to do that?

Today’s Wildly Heterogenous Hardware
Example

') Memory

MPU

TPU AC;e' GPU CPU CPU CPU CPU CPU CPU

Disk

3

p

" Lesson 1 Processing units'

heterogeneity is here to
stay, but no cache-
coherent memories

:’.'

®
-
e

57

-

.
= -
. 5506 —
. d I

. . -
-

Program like SMP

Popcorn Design e o et
/

[“/)

Middleware

E— Same
Compiler Runtime interface

Operating System Kernel

Multiple
communicating
OS krn/rtm/FW

Why and how?

Classic Software for Heterogeneous Hardware

Software runs on CPUs

Other processing units [O@q O ['] [W
cannot run the same
D

software as the CPUs

Programmer (strictly) Compiler SySte m

partitions the application Drv
Each partition runs only HLIRENE S()ftwa re

on a predefined
processing unit
Supporting drivers,
runtime, compilers

| |
What Are the Problems? e |

Compiler SYSte m

Drv

rnime Software -

* For each hardware component woou
* Modify all software layers &

* Nightmare for application’s programmers
* Hard to program
e Difficult to port to a new platform

* Poor resource utilization (performance, energy efficiency,
determinism)
* One programmer focuses on one application
* Many applications run at the same time

New Software for Heterogeneous Hardware

* The OS extends among
all processing units

* The compiler builds
applications software to el e
run among all
processing units

* The runtime supports Operating System Kernel 0S
all processing units

* Programmers don’t
have to partition the
application, which may
run everywhere,
transparently

¥ Runtime

) Compiler

Popcorn Linux

runtime

migration
@ @

Application State

* Runtime
* Runtime ISA execution migration
* State transformation
 Based on musl C library

* Compiler Framework

ISA A specific ISA B specific « Offline analysis
code code

[* Model-based code optimization

Source Analyzed Per-ISA * One binary per ISA

Code Source Code - * Based on gcc/LLVM

* Replicated-kernel Operating System
* One kernel per ISA

e Distributed systems services
* Single system Image
Based on Linux

ISA B

X_Gene“

Popcorn Linux — Operating System

Single System Image

Popcorn
Linux krnO Services

Popcorn

Popcorn NS I Popcorn NS

Popcorn Communication Layer

Single System Image
e Based on Popcorn namespaces (NS)

* Creates a single operating environment
* Migrating app sees the same OS
* Extends Linux namespaces

Distributed OS Services
* Task (thread and process) migration
* Native code migration
* Distributed memory management (DSM)
* Distributed file system

Inter-kernel Communication Layer

* Performance critical component
* |ow-latency and high-throughput

* Exclusively kernel-space

e Single format among ISAs

Popcorn Linux — Task Migration

* Thread Migration

e Selected threads are transferred
 Threads' state is transferred

e Kernels coordinate to maintain
application state consistent

* Process Migration

* Whole application is transferred
e All threads, user- & kernel-state

* No dependecies are left on the
origin kernel

Single System Image

Single System Image Single System Image Single System Image

krn0 (o vices krn1 krnO-! cervices krnl

krn0 o rvices krnl krnO services krnl

Popcorn Linux — Thread Migration’s DSM

* Replicated virtual address space
* Kept consistent among kernels

e Page coherency protocol

* Based on Modified-Shared-Invalid
(MSI) cache coherency protocol

* Memory page granularity instead
of cache line granularity

* Additional states to improve
performance

e Scaled from two kernels to
multiple kernels

Fetch_Meg /
Copy_Msg

App_Write |
Eroadcast:
Invalld_Msg

N

Invallid_Msg

App_Read or
App_Write /

Broadeast:
Felch_Msg

Fateh_MEg /
EIJP"'_MEJ;

Fatch_Meg /
Copy_\old_Msg

Invalld_Msg

Popcorn Linux — Compiler/Runtime

runtime

migration
O @

Application State

% OmO ISA 2 ISA A specific ISA B specific
‘ oot code code
Source Analyzed Per-ISA .
! ! : intel) appiiec
Code = Source | Code ISAA [y, e\ ISAB
‘ f x86 ARM
Profiler Complle.r Runtime
- Toolchain Framework

* Profiler
* Performance and power profiles
* Function and sub-function granularity

* QOutput performance and power code
indicators

» Affinity estimations with cost model

 Compiler Toolchain

e Qutput heterogenous-ISA binary
(native)
* Common address space (including TLS)
* Insert migration points (fun boundaries)
* Add state transformation metadata

e Runtime Framework

e Support task migration

* |Implements state transformation
* Stack-transformation (rewriting)
* Register-transformation

Popcorn Linux — Compiler

* Produces program binaries for each ISA 86 .2
« Common address space
text |Ox400 Foo 0x400 Foo
* Common type system 0x480 Main | < » [0x480 Main
. 0Ox5a0 Rand * » [0x5a0 Rand
* Each symbol at same virtual address on any ISA Ox5b8 Malloc | < » [0x5b8 Malloc
. rodata | QOx600 tmask Ox600 tmask
* No address space conversion! 0x608 states | < » [0x608 sies
« Common thread-local storage (TLS) layout e T D s
° bss | 0x800 _bss start 0x800 __bss start
x86_64 layout forced e . foxsTo— s
* No TLS conversion! Ox8ad4 a > » [0xBad
. .) 0x8d8 myid | « » [0xBd8 myid
* Migration points arrayh

1

Foo ()
* Cannot migrate at any instruction Program [‘ ” I 1
. . . . Bi
* State-transformation meta-data in binaries nan e

* E.g., var properties, stack frame offsets

(Merged) Virtual
Address Space

Popcorn Linux — Runtime
Stack Transformation
x86_64 Stack

.dealler's frame)...

aarch64 Stack

.Acallar's frama)...

Additional Arguments Additional Argumenis
(couldn't pass in regs) {couldn't pass in regs)

Return Address Return Address

Caller's Frame pninter% Caller's Frame pointer

Data Structure “bar"

Data Structure "bar”
Variable "baz" I N) arg 1
' arg 2
arg 1 |
arg 2 1
w&ﬂ"— Ua"ah.l.e "haz"
Variable "bat"
x86_64 Register State

aarch64 Register State

Popcorn Linux Results

* Ease programmability Homogeneous System Heterogeneous System
* Enable portability (and legacy support)

* Improve resource utilization

[balanced x86
balanced ARM

Bl static x86(1)
[static x86(2

* Runtime decisions (vs static)] Bn— i ————)
] /10
* On heterogeneous-ISA [1] R - = A
= _
* Up to 3.5x more performant & 150 (il =
= B \7
than other heterogeneous > H
O 2 100t bR R R R
frameworks SE
V)]
e On fully heterogeneous-ISA [2] S .
S8 MHEHELHL YRR B
* Up to 66% better energy
consumption for bursty arrivals ol M| Wl Nl B Nl B[N Nl B ‘
set-0 set-1 set-2 set-3 set-4 set-5 set-6 set-7 set-8 set-9 avg
[1] “Bridging the Programmability Gap in Heterogeneous-ISA Platforms” [2] “Breaking the Boundaries in Heterogeneous-ISA Datacenters” A.

A. Barbalace et al., EuroSys '15 Barbalace et al., ASPLOS '17

First 5 years of the project in Summary

Gigantic Engineering Effort Lesson 2: very complex to build
and debug because
Operating Systems development affects several
* Multiple kernels Linux software layers

* Repurpose monolithic Linux kernel as a message-passing kernel
* Convert Linux’s subsystems from SHM to SHM+message-passing

. Compiler/Linker Lesson 3: instead of Linux,
« Common address space layout, per-ABI stack layout Darwin or DragonFly BSD may
* Compile into different ISA binaries with LLVM/gold have reduced development time
* Insert equivalence points at which stacks can be converted
(stackmaps)
e Runtime Libra ry Lesson 4: LLVM as a cross-
« Extended standard library (based on music) compiler saved a lot of time, and
* Provide “builtin” functions to convert and migrate at eq points muslc supports a large amount

of apps

Feedback from Industry and Academia #1

Lesson 5: for production apps,
° Constraining dependencies that use hacks for performance,

]] transparency is hard to provide
* Need application source-code

 Eventual code modifications

« and compiler script rewriting Lesson 6: impossible to keep up

. . with upstream developments —
* Must use Popcorn Linux Compiler Framework fix one version

» Specific version of LLVM
* Specific version of musl C library Lesson 7: adding a new CPU

* Must use Popcorn Linux kernel architecture may be
incompatible with previous

* Few kernel versions and CPU architectures supported _ ,
assumptions (32bit?)

* Limited POSIX support

* Not all Linux subsystems supported Lesson 8: cannot support all
Linux subsytems, need
automatic way to convert
subsystems into SHM+MSG

Feedback from Industry and Academia #2

* Limiting factors

* Not well integrated in the Linux kernel nor in LLVM

* Requires Linux kernel patching
* Requires LLVM patching

* Doesn’t support dynamically compiled code

* Including JIT, self-modifying, etc.
* E.g., Java, .NET

* Restricted library support

* Doesn’t support dynamic libraries
e Cannot migrate in library-code (if not recompiled)

 Supports application/container migration

List continues ...

* Doesn’t generalize to VMs

-

Lesson 9: Implement
functionalities in modules or
plugins to minimize patching

Lesson 10: for dynamically
compiled code, need to control
the way code is generated

Lesson 12:
containers/namespaces nice
abstraction for migration

Lesson 11: a more generic
techniques is needed to runtime
migration among VMs (Popcorn
relies on the syscall abstraction)

The latest 2+ years ...

* Keep evolving Popcorn

amd64 +aarch64 +arm
Heterogeneous Popcorn
Linux with compiler

amd64 +aarch64 +ppc64d
Heterogeneous Popcorn
Linux with compiler

amd64 +aarch64
Heterogeneous Popcorn
Linux (DSM++) with
compiler for clusters

amd64 +aarch64
Heterogenous Popcorn
CRIU with automatic
compiler

H-Containers

amd64 +aarch64
Heterogeneous Popcorn
unikernels with compiler

and checkpoint/res* ..t LIVDL »

)

amd64 +aarch64 -
Heterogeneous Popcorn
Linux/KVM with compiler
for clusters

Under Development

HEterogeneous eXecution Offloading
HEXO #1

runtime
migration e Runtime
-— * Unikernel-level checkpoint
* |ibOS code is per-ISA
LLVM IR Unikernel State * Substituted at runtime
5 o sl | 1sAAspecific 15AB specific * Compiler Framework
code code * One binary per ISA
Single-ISA * Including libOS
Binary - * Based on gcc/LLVM

* Migration-aware Hypervisor
* One hypervisor per ISA

* Migration service
* Aware of the migrating unikernel

e Based on Linux/KVM

HEterogeneous eXecution Offloading

Upcoming
job

HEXO #2
?

* HEXO migrates at runtime compute-
intensive background jobs
00 000
90 00 .

* From fast & expensive x86-64
servers to slow and cheap ARM64

embedded boards

* Uses Popcorn state transformation

e Lightweight VMs (unikernels) as unit of

execution
Board

* Slowdown from running on the O ()

board is highly variable

* Profiles jobs at runtime on the server
» Offloads the ones with the smallest O Low slowdown job

estimated slowdown
. High slowdown job

H-Containers

runtime

LLVM IR

o> &

Single-ISA
Binary

f Runtime (muslc-based)
ISA a ISA A specific ISA B specific
> > code code
* LLVM IR to per-ISA Binary
* Vanilla Operating Syste
m * Based prTaX, Linux containers
Bk * Namespaces, cgroups

migration e Runtime

——

-— * OS Process-level

Checkpoint/Restart
* Transpiler Framework
|
: ° Y - * Based on McSema/Remill and
B\ScGere\ ISA B

Application State * Based on CRIU and Popcorn
* Binary decompiled to LLVM IR
Linux krnO Linux krn1l Popcorn Compiler (LLVM)
ARM

H-Container — Runtime
Checkpoint/Restart Migration

Origin Machine (ISA A)

jJulodday)d
culdojsueld]

(Application state)
Container

*New Components

| -

\ n

‘ u

| —

3

Image * @

. (]

- File =
- 4 =
(Application state) E

Destination Machine (ISA B)

o)

A 4

Container

H-Containers — Transpiler

Non-LLVM - s PR ROSTY'Y
Compller N Compller
User
Source Code '
User provided User provided Cross-ISA Migratable
Binary LLVM IR Binaries

Native
Exec H-Container | LLVM IR R H-Container Native
Binary De-Compiler Compiler ' Exec
I 74 . RN I . N Binary
-2 McSema/Remill AR -2 Popcorn Compiler ~< -
/,,/ / \\\\ /,,/ p p \\\\ —7
Disassembl . : Migration : Compiler
> > — > .
or Lifter Fixer Points Aligner and Linker

New System Software 26

Summary Thanks! Questions?

 Computing platforms with multiple groups of processing units are here to stay
* Non cache-coherent
* Microarchitectural or ISA heterogeneous

e Can be programmed as (homogenous) SMP platforms — hence, easily!

* By means of new systems software (Popcorn Linux and Co)
« Common OS interface and transferrable OS state
 Common address space layout and format/type/padding

* Transforming how we are building software today

* Tested on open-source real-world system software
* Several lessons learned in the process
 We are not in the early days of computing — gigantic amount of work to modifying all SW layers
e Hard to keep up with upstream developments
* etc.

abarbala@ed.ac.uk

mailto:abarbala@ed.ac.uk

