
Towards Emergent Scheduling for
Distributed Execution Frameworks

Paul Al lan Dean

Supervisor: Dr Barry Porter

Lancaster University, UK

p.dean1@lancaster.ac.uk

1

Introduction

2

As data collection, storage, and processing capabilities have increased, it is now common to
process many gigabytes of data – for analysis, information extraction, or machine learning.

Distributed execution frameworks (DEFs) like Spark provide users with a framework for
submitting, scheduling, and executing large complex workloads across hundreds of machines.
• Workloads consist of multiple jobs

• A job is a set of one or more computational tasks.

The main cost of DEFs is the scheduling of workloads, with a reduction in this cost offering:

• Lower completion time
• Efficient resource usage

• Reduced energy consumption

Previous Approaches
General purpose DEFs

• Apache Spark
In-memory Data intensive
workloads
• Flink
Prioritises latency sensitive
workloads
• Hadoop
Long running batch processes

• Single fixed architecture using a
single policy

• Same scheduling for all
workloads

3

General purpose DEFs

• Apache Spark
In-memory Data intensive
workloads
• Flink
Prioritises latency sensitive
workloads
• Hadoop
Long running batch processes

Workload specific DEFs

• Ray
Prioritises reinforcement
learning workloads
• Storm
Low-latency/real-time task
computation
• Horovod
Machine learning (Deep
Learning) workloads

Previous Approaches

• Increased performance for a
specific workload

• Unintended workloads suffer a
larger performance hit

• Single fixed architecture using a
single policy

• Same scheduling for all
workloads

4

General purpose DEFs

• Apache Spark
In-memory Data intensive
workloads
• Flink
Prioritises latency sensitive
workloads
• Hadoop
Long running batch processes

Workload specific DEFs

• Ray
Prioritises reinforcement
learning workloads
• Storm
Low-latency/real-time task
computation
• Horovod
Machine learning (Deep
Learning) workloads

• Increased performance for a
specific workload

• Unintended workloads suffer a
larger performance hit

Hybrid DEFs

• Hawk
Provides two approaches to
scheduling at the cost of
overall performance
• Mercury
Expands Apache spark
providing hybrid scheduling
while maintaining fairness

• Capable of scheduling a larger
workload set

• Limited by the overhead of
selecting the correct approach

Previous Approaches

• Single fixed architecture using a
single policy

• Same scheduling for all
workloads

5

General purpose DEFs

• Apache Spark
In-memory Data intensive
workloads
• Flink
Prioritises latency sensitive
workloads
• Hadoop
Long running batch processes

Workload specific DEFs

• Ray
Prioritises reinforcement
learning workloads
• Storm
Low-latency/real-time task
computation
• Horovod
Machine learning (Deep
Learning) workloads

Hybrid DEFs

• Hawk
Provides two approaches to
scheduling at the cost of
overall performance
• Mercury
Expands Apache spark
providing hybrid scheduling
while maintaining fairness

Adaptive/Learning DEFs

• MR Adapt
Policy adaptation using user
provided completion times
• FlexTree
Model-based adaptation for
workloads
• Decima
Learns a scheduling policy for
a specific workload type

• Require user intervention for
correct adaptation

• Learning based approaches are
efficient while limited to a
specific workload type

Previous Approaches

• Increased performance for a
specific workload

• Unintended workloads suffer a
larger performance hit

• Capable of scheduling a larger
workload set

• Limited by the overhead of
selecting the correct approach

• Single fixed architecture using a
single policy

• Same scheduling for all
workloads

6

Self-Adaptive Approach
Create a DEF which is capable of adapting the scheduling policy at runtime to reduce the
scheduling overhead for a current workload of a larger set.

• Using the Dana programming language to create components containing DEF logic

• Components are assembled into a composition creating a complex system (node within DEF)

Self-adaptation of a scheduling policy for a given workload is challenging:

•Adaptation requires an identifiable point to change during workloads

•A machine learning agent to learn the near optimal composition for a given workload

7

System Architecture

User submitted workload is
passed to the Resource
Manager starting the
deployment of Application
Masters

Resource Manager

Application
Master Service

Scheduling
Components

Node Manager Node Manager Node Manager

8

Application Master begins on
a corresponding Node
Manager and request
Executors

Resource Manager

Application
Master Service

Scheduling
Components

Node Manager Node Manager Node Manager

Application
Master

System Architecture

9

Executors are scheduled,
deployed and begin
completing computational
tasks passed from the
Application Master

Resource Manager

Application
Master Service

Scheduling
Components

Node Manager Node Manager Node Manager

Application
Master

Executor Executor

System Architecture

10

Resource Manager

Application
Master Service

Scheduling
Components

Node Manager Node Manager Node Manager

Previous process is repeated for
the remaining submitted jobs
within the schedulers queue

Application
Master

Executor Executor

Application
Master

Executor Executor

System Architecture

11

Emergent scheduler – example

Application Master
Service

AppMstrService<Interface>

FIFO

Scheduling<Interface>

Naïve Fair - Memory Dominant Resource
Fairness

Naïve Fair - Thread

Application
Submission handler

AppSubmission<Interface>

Resource Manager

App<Interface>
Main method: opens server
sockets, accepts client requests
and begins job submission

Takes user submitted applications
and parses all required
information

Takes requests from application
submission handler and
Application Master Service,
scheduling and deploying
Application masters and Executors

Takes executor requests from
registered Application Masters

Begin setup of deployed component
via a Node Manager

12

Emergent scheduler – example (continued)

Application Master
Service

AppMstrService<Interface>

FIFO

Scheduling<Interface>

Naïve Fair - Memory Dominant Resource
Fairness

Naïve Fair - Thread

Application
Submission handler

AppSubmission<Interface>

Resource Manager

App<Interface>

Begin setup of deployed component
via a Node Manager

Workload A
Submission of 15
fine grained jobs

13

Emergent scheduler – example (continued)

Application Master
Service

AppMstrService<Interface>

FIFO

Scheduling<Interface>

Naïve Fair - Memory Dominant Resource
Fairness

Naïve Fair - Thread

Application
Submission handler

AppSubmission<Interface>

Resource Manager

App<Interface>

Begin setup of deployed component
via a Node Manager

Workload B
Submission of 15
coarse grained jobs

14

Methodology
The experiments consisted of 15 synthetic workloads of varying granularity:
• Coarse
• Fine
• Mixed

Using 4 scheduling policies:
• FIFO
• Dominant resource fairness
• Naïve fair (Thread)
• Naive fair (Memory)

•The workloads were run on a cluster comprised of 5 machines:
• 3.6GHz 8 cores
• 16GB memory

15

Results: Comparison for all workloads

16

Results: Comparison for all workloads

17

Results: Comparison for all workloads

18

Results: Comparison for all workloads

19

Results for workload CG-W1

20

Results for workload CG-W1

21

Results for workload CG-W1

22

Results for workload CG-W1

23

Future Work
The previously shown results identify points within the batched and individual workload traces
where a performance gain may be obtained through adaptation.

• Experiment and compare public benchmarks/workloads of the same type

• Explore the efficiency of machine learning agents for adaptation

• Compare a self-adaptive scheduling approach

24Paul Allan Dean p.dean1@Lancaster.ac.uk

