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Introduction
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As data collection, storage, and processing capabilities have increased, it is now common to 
process many gigabytes of data – for analysis, information extraction, or machine learning.

Distributed execution frameworks (DEFs) like Spark provide users with a framework for 
submitting, scheduling, and executing large complex workloads across hundreds of machines.
• Workloads consist of multiple jobs

• A job is a set of one or more computational tasks.

The main cost of DEFs is the scheduling of workloads, with a reduction in this cost offering:

• Lower completion time
• Efficient resource usage

• Reduced energy consumption



Previous Approaches
General purpose DEFs

• Apache Spark
In-memory Data intensive 
workloads 
• Flink
Prioritises latency sensitive 
workloads
• Hadoop
Long running batch processes 

• Single fixed architecture using a 
single policy

• Same scheduling for all 
workloads
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Self-Adaptive Approach
Create a DEF which is capable of adapting the scheduling policy at runtime to reduce the 
scheduling overhead for a current workload of a larger set. 

• Using the Dana programming language to create components containing DEF logic

• Components are assembled into a composition creating a complex system (node within DEF)

Self-adaptation of a scheduling policy for a given workload is challenging:

•Adaptation requires an identifiable point to change during workloads

•A machine learning agent to learn the near optimal composition for a given workload
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System Architecture

User submitted workload is 
passed to the Resource 
Manager starting the 
deployment of Application 
Masters

Resource Manager

Application 
Master Service

Scheduling 
Components

Node Manager Node Manager Node Manager
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Application Master begins on 
a corresponding Node 
Manager and request 
Executors

Resource Manager

Application 
Master Service

Scheduling 
Components

Node Manager Node Manager Node Manager

Application 
Master 

System Architecture
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Executors are scheduled, 
deployed and begin 
completing computational 
tasks passed from the 
Application Master

Resource Manager

Application 
Master Service

Scheduling 
Components

Node Manager Node Manager Node Manager

Application 
Master 

Executor Executor

System Architecture

10



Resource Manager

Application 
Master Service

Scheduling 
Components

Node Manager Node Manager Node Manager

Previous process is repeated for 
the remaining submitted jobs 
within the schedulers queue

Application 
Master 

Executor Executor

Application 
Master 

Executor Executor

System Architecture
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Emergent scheduler – example

Application Master 
Service

AppMstrService<Interface>

FIFO

Scheduling<Interface>

Naïve Fair - Memory Dominant Resource 
Fairness

Naïve Fair - Thread

Application 
Submission handler

AppSubmission<Interface>

Resource Manager

App<Interface>
Main method: opens server 
sockets, accepts client requests 
and begins job submission

Takes user submitted applications 
and parses all required 
information

Takes requests from application 
submission handler and 
Application Master Service, 
scheduling and deploying 
Application masters and Executors

Takes executor requests from 
registered Application Masters

Begin setup of deployed component 
via a Node Manager
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Emergent scheduler – example (continued)

Application Master 
Service

AppMstrService<Interface>

FIFO

Scheduling<Interface>

Naïve Fair - Memory Dominant Resource 
Fairness

Naïve Fair - Thread

Application 
Submission handler

AppSubmission<Interface>

Resource Manager

App<Interface>

Begin setup of deployed component 
via a Node Manager

Workload A
Submission of 15 
fine grained jobs
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Emergent scheduler – example (continued)

Application Master 
Service

AppMstrService<Interface>

FIFO

Scheduling<Interface>

Naïve Fair - Memory Dominant Resource 
Fairness

Naïve Fair - Thread

Application 
Submission handler

AppSubmission<Interface>

Resource Manager

App<Interface>

Begin setup of deployed component 
via a Node Manager

Workload B
Submission of 15 
coarse grained jobs
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Methodology
The experiments consisted of 15 synthetic workloads of varying granularity:
• Coarse 
• Fine 
• Mixed

Using 4 scheduling policies:
• FIFO
• Dominant resource fairness 
• Naïve fair (Thread)
• Naive fair (Memory)

•The workloads were run on a cluster comprised of 5 machines: 
• 3.6GHz 8 cores
• 16GB memory
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Results: Comparison for all workloads
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Results for workload CG-W1
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Results for workload CG-W1
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Results for workload CG-W1
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Results for workload CG-W1
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Future Work
The previously shown results identify points within the batched and individual workload traces 
where a performance gain may be obtained through adaptation.

• Experiment and compare public benchmarks/workloads of the same type

• Explore the efficiency of machine learning agents for adaptation

• Compare a self-adaptive scheduling approach 
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