[LancasterE

University €<%

Towards Emergent Scheduling for
Distributed Execution Frameworks

Paul Allan Dean
Supervisor: Dr Barry Porter
Lancaster University, UK

p.deanl@lancaster.ac.uk

Introduction

As data collection, storage, and processing capabilities have increased, it is now common to
process many gigabytes of data — for analysis, information extraction, or machine learning.

Distributed execution frameworks (DEFs) like Spark provide users with a framework for
submitting, scheduling, and executing large complex workloads across hundreds of machines.

* Workloads consist of multiple jobs

* A job is a set of one or more computational tasks.

The main cost of DEFs is the scheduling of workloads, with a reduction in this cost offering:
* Lower completion time

* Efficient resource usage

* Reduced energy consumption

Previous Approaches

General purpose DEFs

* Apache Spark
In-memory Data intensive
workloads

* Flink

Prioritises latency sensitive
workloads

* Hadoop

Long running batch processes

* Single fixed architecture using a
single policy

* Same scheduling for all
workloads

Previous Approaches

General purpose DEFs Workload specific DEFs

* Apache Spark * Ray

In-memory Data intensive Prioritises reinforcement

workloads learning workloads

* Flink * Storm

Prioritises latency sensitive Low-latency/real-time task

workloads computation

* Hadoop * Horovod

Long running batch processes Machine learning (Deep
Learning) workloads

* Single fixed architecture using a * Increased performance for a
single policy specific workload

¢ Same scheduling for all * Unintended workloads suffer a
workloads larger performance hit

Previous Approaches

General purpose DEFs Workload specific DEFs Hybrid DEFs

* Apache Spark
In-memory Data intensive
workloads

* Flink

Prioritises latency sensitive
workloads

* Hadoop

Long running batch processes

* Ray

Prioritises reinforcement
learning workloads

* Storm
Low-latency/real-time task
computation

* Horovod

Machine learning (Deep
Learning) workloads

* Hawk

Provides two approaches to
scheduling at the cost of
overall performance

* Mercury

Expands Apache spark
providing hybrid scheduling
while maintaining fairness

* Single fixed architecture using a
single policy

* Same scheduling for all
workloads

* Increased performance for a

specific workload

¢ Unintended workloads suffer a

larger performance hit

e Capable of scheduling a larger

workload set

* Limited by the overhead of

selecting the correct approach

Previous Approaches

General purpose DEFs Workload specific DEFs

Hybrid DEFs Adaptive/Learning DEFs

* Apache Spark
In-memory Data intensive
workloads

* Flink

Prioritises latency sensitive
workloads

* Hadoop

Long running batch processes

* Single fixed architecture using a
single policy

* Same scheduling for all
workloads

* Ray

Prioritises reinforcement
learning workloads

* Storm
Low-latency/real-time task
computation

* Horovod

Machine learning (Deep
Learning) workloads

* Increased performance for a
specific workload

* Unintended workloads suffer a
larger performance hit

* Hawk

Provides two approaches to
scheduling at the cost of
overall performance

* Mercury

Expands Apache spark
providing hybrid scheduling
while maintaining fairness

* MR Adapt

Policy adaptation using user
provided completion times

* FlexTree

Model-based adaptation for
workloads

* Decima

Learns a scheduling policy for
a specific workload type

e Capable of scheduling a larger
workload set

* Limited by the overhead of
selecting the correct approach

* Require user intervention for
correct adaptation

e Learning based approaches are
efficient while limited to a
specific workload type

Self-Adaptive Approach

Create a DEF which is capable of adapting the scheduling policy at runtime to reduce the
scheduling overhead for a current workload of a larger set.

* Using the Dana programming language to create components containing DEF logic

* Components are assembled into a composition creating a complex system (node within DEF)

Self-adaptation of a scheduling policy for a given workload is challenging:
*Adaptation requires an identifiable point to change during workloads

*A machine learning agent to learn the near optimal composition for a given workload

System Architecture

User submitted workload is . \

Resource Manager
passed to the Resource
Manager starting the

Application
deployment of Application Master Service
Masters Scheduling

Components /

Node Manager \ Node Manager Node Manager \

MY

/ J J

System Architecture

“ %
Application Master begins on s

Resource Manager\
a corresponding Node

Manager and request Appllcatlorm
Executors Master Service

Scheduling
Components J

Node Manager) Node Manager Node Manager R
Application
Master

/ / /

System Architecture

[{)
™

Executors are scheduled, .~ Resource Manager\

deployed and begin _
completing computational Appllcat|or1
tasks passed from the Master Service

Application Master Scheduling
Components J

Node Manager \ Node Manager \ Node Manager \

Application
PP Executor Executor
Master

J J J

System Architecture

z
Previous process is repeated for s

R rce Man r\
the remaining submitted jobs esource viahage

within the schedulers queue Application
Master Service
Scheduling
Components J

Node Manager \
Application
Master
/

Node Manager N Node Manager N

Executor

Executor

Application
Master /

Executor

Emergent scheduler — example

[= - - - - - —— 1

1App<interface>
1

1
1
| Resource Manager
1

Takes executor requests from

registered Application Masters Application

1
1
Application Master :

Service :

Dominant Resource

I
I
|
| FIFO Naive Fair - Thread
I
|
|
: Fairness

Begin setup of deployed component
via a Node Manager

Submission handler

Main method: opens server
sockets, accepts client requests
and begins job submission

: Takes user submitted applications
: and parses all required

1 | information

1

Takes requests from application
submission handler and
Application Master Service,
scheduling and deploying
Application masters and Executors

Emergent scheduler — example (continued)

[= - - - - - —— 1

1App<interface>
1

Workload A
Submission of 15
fine grained jobs

1
1
| Resource Manager
1

1
1
Application Master :

Service :

[S R oo

1
| 1
| Application :
: Submission handler :

Dominant Resource

I I
1 1
1 1
: FIFO Naive Fair - Thread :
: :
1 1
I) I
] Fairness]

Begin setup of deployed component
via a Node Manager

Emergent scheduler — example (continued)

[= - - - - - —— 1

1App<interface>
1

Workload B
Submission of 15
coarse grained jobs

1
: [Resource Manager]
1

]
1
| . .
I Service Submission handler

1 1
1 1
1
[Application Master] : 1 [Application] :
! 1
! |

I I
1 1
1 1
: FIFO Naive Fair - Thread :
: :
1 1
I I
1 1

Dominant Resource
Fairness

Naive Fair - Memory [

Begin setup of deployed component
via a Node Manager

Methodology

The experiments consisted of 15 synthetic workloads of varying granularity:
* Coarse

* Fine
* Mixed

Using 4 scheduling policies:
* FIFO
* Dominant resource fairness
* Naive fair (Thread)
* Naive fair (Memory)

*The workloads were run on a cluster comprised of 5 machines:
* 3.6GHz 8 cores

* 16GB memory

Results: Comparison for all workloads

Comparison of workloads across all schedulers

4500000
4000000
3500000
3000000

2500000

2000000
1500000
1000000
500000
0

MG-W1 FG-W1 CG-W1 MG-W2 FG-W2 CG-W2 MG-W3 FG-W3 CG-W3 MG-W4 FG-W4 CG-W4 MG-W5 FG-W5 CG-WS5

Runtime (Milliseconds)

EDRF ENF-T ENF-M ®FIFO

Results: Comparison for all workloads

Comparison of workloads across all schedulers

4500000
4000000
3500000

3000000

2500000
2000000
1500000
1000000
500000
0

MG-W1 FG-W1 CG-W1 MG-W2 FG-W2 CG-W2 MG-W3 FG-W3 CG-W3 MG-W4 FG-W4 CG-W4 MG-W5 FG-W5 CG-WS5

Runtime (Milliseconds)

EDRF ENF-T ENF-M ®FIFO

Results: Comparison for all workloads

Comparison of workloads across all schedulers

4500000

4000000

3500000

3000000

2500000

2000000
1500000
1000000
500000
0

MG-W1 FG-W1 CG-W1 MG-W2 FG-W2 CG-W2 MG-W3 FG-W3 CG-W3 MG-W4 FG-W4 CG-W4 MG-W5 FG-W5 CG-WS5

Runtime (Milliseconds)

EDRF ENF-T ENF-M ®FIFO

Results: Comparison for all workloads

Comparison of workloads across all schedulers

4500000
4000000
3500000
3000000

2500000

2000000
1500000
1000000
500000
0

MG-W1 FG-W1 CG-W1 | MG-W2 FG-W2 CG-W2 MG-W3 FG-W3 CG-W3 MG-W4 FG-W4 CG-W4 MG-W5 FG-W5 CG-WS5

Runtime (Milliseconds)

EDRF ENF-T ENF-M ®FIFO

Results for workload CG-W1

CG-Wa1 for all schedulers

3000000

2500000

runtime (milliseconds)

o

2000000

1500000

1000000

SR
| m m il w ||| I || Il ||| ‘ll ||| “ |||
.

& @ & NN NN S
& & & & F & L P PP PP PSP I

R R R R Q Q R R R
Q))) Q Q))) N L R R L Q R L Q L Q
\a s s A s s s s A vﬂ vQ vﬁ v& vQ vQ vﬁ v& vQ VQ vﬁ

mDRF mNF-T mNF-M w®mFIFO

Results for workload CG-W1

CG-Wa1 for all schedulers

3000000

2500000

runtime (milliseconds)

2000000
1500000
1000000
“ WLl i i |
.. | || m il ||| I || Il ||| ‘ll ||| “ |||
.

A AZ ’\
& & $ & L P & PP PP (J(';\’ & &P &L

R R Q R Q Q R R R
Q))) Q Q))) N L R R L Q R L Q L Q
\a s s A s s s s A vﬂ vQ vﬁ v& vQ vQ vﬁ v& vQ VQ vﬁ

mDRF mNF-T mNF-M w®mFIFO

Results for workload CG-W1

CG-Wa1 for all schedulers

3000000

2500000

runtime (milliseconds)

2000000
1500000
1000000
.l i | |
0 | || m il w ||| I || Il ||| ‘ll ||| “ |||
.

& @ & @'\9\?’ NN NN S
& & & & F & L P PP PP PSP I

R R R R Q Q R R R
Q))) Q Q))) N L R R L Q R L Q L Q
\a s s A s s s s A vﬂ vQ vﬁ v& vQ vQ vﬁ v& vQ VQ vﬁ

mDRF mNF-T mNF-M w®mFIFO

Results for workload CG-W1

CG-Wa1 for all schedulers

3000000

2500000

2000000

1500000

1000000

“ i | | | |
el Ml || m ill o MMl ||| I || Il ||| ‘ll ||| “ Il
¥y & & & S SRS e

> > A] D N " NZ " & 9 Q
GRS A AN N Y A < C RN SN N S G SN SN O G I S

R R R R R R R R R ©
Q))) Q Q))) N L R R L L R L L L R
\a s s A s s s s A vﬂ vQ vﬁ v& vQ vQ vﬁ v& vQ VQ vﬁ

runtime (milliseconds)

o

mDRF mNF-T mNF-M w®mFIFO

Future Work

The previously shown results identify points within the batched and individual workload traces
where a performance gain may be obtained through adaptation.

* Experiment and compare public benchmarks/workloads of the same type
* Explore the efficiency of machine learning agents for adaptation

* Compare a self-adaptive scheduling approach

Paul Allan Dean p.deanl@Lancaster.ac.uk

