[LancasterE

University €<%

Towards Emergent Scheduling for
Distributed Execution Frameworks

Paul Allan Dean
Supervisor: Dr Barry Porter
Lancaster University, UK

p.deanl@lancaster.ac.uk




Introduction

As data collection, storage, and processing capabilities have increased, it is now common to
process many gigabytes of data — for analysis, information extraction, or machine learning.

Distributed execution frameworks (DEFs) like Spark provide users with a framework for
submitting, scheduling, and executing large complex workloads across hundreds of machines.

* Workloads consist of multiple jobs

* A job is a set of one or more computational tasks.

The main cost of DEFs is the scheduling of workloads, with a reduction in this cost offering:
* Lower completion time

* Efficient resource usage

* Reduced energy consumption
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* Same scheduling for all
workloads
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Previous Approaches

General purpose DEFs Workload specific DEFs Hybrid DEFs

* Apache Spark
In-memory Data intensive
workloads

* Flink

Prioritises latency sensitive
workloads

* Hadoop

Long running batch processes

* Ray

Prioritises reinforcement
learning workloads

* Storm
Low-latency/real-time task
computation

* Horovod

Machine learning (Deep
Learning) workloads

* Hawk

Provides two approaches to
scheduling at the cost of
overall performance

*  Mercury

Expands Apache spark
providing hybrid scheduling
while maintaining fairness

* Single fixed architecture using a
single policy

* Same scheduling for all
workloads

* Increased performance for a

specific workload

¢ Unintended workloads suffer a

larger performance hit

e Capable of scheduling a larger

workload set

* Limited by the overhead of

selecting the correct approach




Previous Approaches

General purpose DEFs Workload specific DEFs

Hybrid DEFs Adaptive/Learning DEFs

* Apache Spark
In-memory Data intensive
workloads

* Flink

Prioritises latency sensitive
workloads

* Hadoop

Long running batch processes

* Single fixed architecture using a
single policy

* Same scheduling for all
workloads

* Ray

Prioritises reinforcement
learning workloads

* Storm
Low-latency/real-time task
computation

* Horovod

Machine learning (Deep
Learning) workloads

* Increased performance for a
specific workload

* Unintended workloads suffer a
larger performance hit

* Hawk

Provides two approaches to
scheduling at the cost of
overall performance

*  Mercury

Expands Apache spark
providing hybrid scheduling
while maintaining fairness

* MR Adapt

Policy adaptation using user
provided completion times

* FlexTree

Model-based adaptation for
workloads

* Decima

Learns a scheduling policy for
a specific workload type

e Capable of scheduling a larger
workload set

* Limited by the overhead of
selecting the correct approach

* Require user intervention for
correct adaptation

e Learning based approaches are
efficient while limited to a
specific workload type




Self-Adaptive Approach

Create a DEF which is capable of adapting the scheduling policy at runtime to reduce the
scheduling overhead for a current workload of a larger set.

* Using the Dana programming language to create components containing DEF logic

* Components are assembled into a composition creating a complex system (node within DEF)

Self-adaptation of a scheduling policy for a given workload is challenging:
*Adaptation requires an identifiable point to change during workloads

*A machine learning agent to learn the near optimal composition for a given workload
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System Architecture

z
Previous process is repeated for s

R rce Man r\
the remaining submitted jobs esource viahage

within the schedulers queue Application
Master Service
Scheduling
Components J

Node Manager \
Application
Master
/

Node Manager N Node Manager N

Executor

Executor

Application
Master /

Executor




Emergent scheduler — example
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Emergent scheduler — example (continued)
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Emergent scheduler — example (continued)
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Methodology

The experiments consisted of 15 synthetic workloads of varying granularity:
* Coarse

* Fine
* Mixed

Using 4 scheduling policies:
* FIFO
* Dominant resource fairness
* Naive fair (Thread)
* Naive fair (Memory)

*The workloads were run on a cluster comprised of 5 machines:
* 3.6GHz 8 cores

* 16GB memory




Results: Comparison for all workloads

Comparison of workloads across all schedulers

4500000
4000000
3500000
3000000

2500000

2000000
1500000
1000000
500000
0

MG-W1 FG-W1 CG-W1  MG-W2 FG-W2 CG-W2 MG-W3 FG-W3 CG-W3 MG-W4  FG-W4 CG-W4 MG-W5 FG-W5 CG-WS5

Runtime (Milliseconds)

EDRF ENF-T ENF-M ®FIFO




Results: Comparison for all workloads

Comparison of workloads across all schedulers

4500000
4000000
3500000

3000000

2500000
2000000
1500000
1000000
500000
0

MG-W1 FG-W1 CG-W1  MG-W2 FG-W2 CG-W2 MG-W3 FG-W3 CG-W3 MG-W4  FG-W4 CG-W4 MG-W5 FG-W5 CG-WS5

Runtime (Milliseconds)

EDRF ENF-T ENF-M ®FIFO




Results: Comparison for all workloads

Comparison of workloads across all schedulers

4500000

4000000

3500000

3000000

2500000

2000000
1500000
1000000
500000
0

MG-W1 FG-W1 CG-W1  MG-W2 FG-W2 CG-W2 MG-W3 FG-W3 CG-W3 MG-W4  FG-W4 CG-W4 MG-W5 FG-W5 CG-WS5

Runtime (Milliseconds)

EDRF ENF-T ENF-M ®FIFO




Results: Comparison for all workloads

Comparison of workloads across all schedulers

4500000
4000000
3500000
3000000

2500000

2000000
1500000
1000000
500000
0

MG-W1 FG-W1 CG-W1 | MG-W2 FG-W2 CG-W2 MG-W3 FG-W3 CG-W3 MG-W4  FG-W4 CG-W4 MG-W5 FG-W5 CG-WS5

Runtime (Milliseconds)

EDRF ENF-T ENF-M ®FIFO




Results for workload CG-W1

CG-Wa1 for all schedulers
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Future Work

The previously shown results identify points within the batched and individual workload traces
where a performance gain may be obtained through adaptation.

* Experiment and compare public benchmarks/workloads of the same type
* Explore the efficiency of machine learning agents for adaptation

* Compare a self-adaptive scheduling approach
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