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Abstract. Dynamic taint analysis [11] is a popular technique in soft-
ware security for tracking suspicious data, e.g., user input, as it flows
during execution of a target application. The analysis associates taint
tags with data that stems from introductory sources, such as reads from
files, and propagates these tags to other memory locations according to
data movements. At particular execution points, the tags of memory
locations are checked to determine whether certain runtime properties
hold, e.g., whether or not any control data, such as function pointers,
are tainted and potentially under the control of a malicious attacker.
Overall, taint analysis has been widely employed for a number of appli-
cations including vulnerability discovery [10, 3, 4], malware analysis [13,
8, 1], and runtime attack detection [9, 6, 12].
However, despite its usefulness, taint analysis is known to incur severely
high runtime overheads. Essentially, the bottleneck stems from additional
code that is instrumented into the target application in order to propa-
gate taint. The performance problem is even more severe when generic
taint analysis [5] is performed, as this flexible variant allows analysts to
implement their own custom propagation logic, instead of using efficient
bitwise OR operations to merge taint [7].
Therefore, we are investigating optimizations aimed at reducing the over-
head of generic taint analysis on x86 binary applications. In particular,
we propose a just-in-time approach that generates fast paths for taint
propagation at runtime. The approach monitors for frequent taint states
related to the inputs and outputs of basic blocks and accordingly gen-
erates fast paths that has instrumentation inserted only for those in-
structions that deal with taint. This is in contrast to traditional taint
trackers which always execute basic blocks that are fully instrumented.
Results show that the proposed optimization reduces the slowdown of 36x
down to 17x over native execution on the SpecCPU 2017 benchmarks [2].
Moreover, our taint tracker also outperforms existing state-of-the-art im-
plementations of generic taint analysis.
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