
Optimizing Generic Taint Analysis

John Galea (PhD Student) and Daniel Kroening

Department of Computer Science
University of Oxford

Abstract. Dynamic taint analysis [11] is a popular technique in soft-
ware security for tracking suspicious data, e.g., user input, as it flows
during execution of a target application. The analysis associates taint
tags with data that stems from introductory sources, such as reads from
files, and propagates these tags to other memory locations according to
data movements. At particular execution points, the tags of memory
locations are checked to determine whether certain runtime properties
hold, e.g., whether or not any control data, such as function pointers,
are tainted and potentially under the control of a malicious attacker.
Overall, taint analysis has been widely employed for a number of appli-
cations including vulnerability discovery [10, 3, 4], malware analysis [13,
8, 1], and runtime attack detection [9, 6, 12].
However, despite its usefulness, taint analysis is known to incur severely
high runtime overheads. Essentially, the bottleneck stems from additional
code that is instrumented into the target application in order to propa-
gate taint. The performance problem is even more severe when generic
taint analysis [5] is performed, as this flexible variant allows analysts to
implement their own custom propagation logic, instead of using efficient
bitwise OR operations to merge taint [7].
Therefore, we are investigating optimizations aimed at reducing the over-
head of generic taint analysis on x86 binary applications. In particular,
we propose a just-in-time approach that generates fast paths for taint
propagation at runtime. The approach monitors for frequent taint states
related to the inputs and outputs of basic blocks and accordingly gen-
erates fast paths that has instrumentation inserted only for those in-
structions that deal with taint. This is in contrast to traditional taint
trackers which always execute basic blocks that are fully instrumented.
Results show that the proposed optimization reduces the slowdown of 36x
down to 17x over native execution on the SpecCPU 2017 benchmarks [2].
Moreover, our taint tracker also outperforms existing state-of-the-art im-
plementations of generic taint analysis.

References

1. Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel,
and Engin Kirda. Scalable, behavior-based malware clustering. In Network and
Distributed System Security Symposium, pages 8–11. Internet Society, 2009.

2. James Bucek, Klaus-Dieter Lange, et al. SPEC CPU2017: Next-Generation Com-
pute Benchmark. In International Conference on Performance Engineering, pages
41–42. ACM, 2018.



2 Galea et al.

3. Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. Undangle:
Early detection of dangling pointers in use-after-free and double-free vulnerabili-
ties. In International Symposium on Software Testing and Analysis, pages 133–143.
ACM, 2012.

4. Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled search. In
Symposium on Security and Privacy, pages 711–725. IEEE, 2018.

5. James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic dynamic taint
analysis framework. In International Symposium on Software Testing and Analysis,
pages 196–206. ACM, 2007.

6. Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. An empirical
study of privacy-violating information flows in JavaScript web applications. In
Computer and Communications Security, volume 10, pages 270–283. ACM, 2010.

7. Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D
Keromytis. LibDFT: Practical dynamic data flow tracking for commodity sys-
tems. In ACM Sigplan Notices, volume 47, pages 121–132. ACM, 2012.

8. David Korczynski and Heng Yin. Capturing malware propagations with code
injections and code-reuse attacks. In Computer and Communications Security,
pages 1691–1708. ACM, 2017.

9. James Newsome and Dawn Song. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software. In Network
and Distributed System Security Symposium, pages 3–4. Internet Society, 2005.

10. Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. VUzzer: Application-aware evolutionary fuzzing. In Network
and Distributed System Security Symposium, pages 1–14. Internet Society, 2017.

11. Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted
to know about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask). In Symposium on Security and Privacy, pages 317–331.
IEEE, 2010.

12. Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Cross site scripting prevention with dynamic data
tainting and static analysis. In Network and Distributed System Security Sympo-
sium, volume 2007, page 12. Internet Society, 2007.

13. Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: Capturing system-wide information flow for malware detection and
analysis. In Computer and Communications Security, pages 116–127. ACM, 2007.


