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I. ABSTRACT

The increased volume of data available to organisations, the
computational resources available within data centres, and the
demand for systems capable of processing Terabytes/Petabytes
of data has influenced the development of numerous Dis-
tributed Execution Frameworks (DEFs), such as Apache Spark
and Ray [1], [2].

DEFs have become a ubiquitous part of modern data pro-
cessing systems, both as standalone processing frameworks
and in a pipeline for a larger service, for example, feature
extraction within a recommender system processing large
volumes of data.

The wide range of workload types for DEFs make it
extremely challenging to build a scheduler able to maximise
throughput for all cases, causing scheduling overheads for
certain workload types, for example, Apache Spark adds
latency to all scheduling decisions hindering the performance
of latency-sensitive workloads. In turn, this has prompted the
creation of DEFs with differing schedulers for Reinforcement
learning [2], Machine Learning (Deep Learning) [3], [4], and
real-time stream processing Workloads [5]–[7]. However, each
of these DEFs has become highly specialised to a particular
workload type, for example Ray focuses on being able to effi-
ciently schedule Reinforcement learning workloads [2]. Other
DEF schedulers have been developed to improve scalability
[8]–[11], while limiting the scheduling policy to a single
metric and losing guarantees for data-locality, significantly
hindering the performance of data-intensive operations. Hybrid
DEFs attempted to benefit from two scheduling architectures
providing efficient scheduling for a larger set of workloads
[11], at the cost of being unable to exploit the full performance
of a single architecture.

Previous approaches to adapting the schedulers of DEFs
have been limited by their need for user intervention: policy
adaptation requires user-provided completion time goals for
incoming workloads [12]; architecture adaptation [13] requires
user creation of a model for adapting a known workload; and
learning based approaches to date have been limited to learning
a single scheduling policy for a specific architecture [14]. Our
research explores a new approach to scheduling within DEFs,
an Emergent Scheduler, capable of autonomously selecting
and composing the ideal architecture and policy for a given

workload at runtime, drawing on a large pool of potential
building blocks.

• Can we use behavioural composition (instead of policy
adaptation) to form different optimal schedulers for dif-
ferent workloads / environments?

• Can we learn the optimal composition at runtime? How
much performance gain do we get vs a fixed architecture?

We present initial results which demonstrate the perfor-
mance of different scheduling strategies when being sub-
jected to workloads of varying granularity, indicating different
scheduling policies are better suited to different workloads.
The results represent an interesting runtime search space for
learning the ideal composition for a given workload. However,
the learning process in this domain is uniquely challenging
in that workloads can be highly divergent with few shared
characteristics, are often non-repeating, and their arrival can
be sporadic. This is a key area of future work, in addition
to considering storage locations of data and more diverse
scheduling architectures.
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