
Towards Emergent Scheduling for Distributed
Execution Frameworks

Paul Allan Dean and Barry Porter
School of computing & communications

Lancaster University
Lancaster, UK

(p.dean1, b.f.porter)@lancaster.ac.uk

I. ABSTRACT

The increased volume of data available to organisations, the
computational resources available within data centres, and the
demand for systems capable of processing Terabytes/Petabytes
of data has influenced the development of numerous Dis-
tributed Execution Frameworks (DEFs), such as Apache Spark
and Ray [1], [2].

DEFs have become a ubiquitous part of modern data pro-
cessing systems, both as standalone processing frameworks
and in a pipeline for a larger service, for example, feature
extraction within a recommender system processing large
volumes of data.

The wide range of workload types for DEFs make it
extremely challenging to build a scheduler able to maximise
throughput for all cases, causing scheduling overheads for
certain workload types, for example, Apache Spark adds
latency to all scheduling decisions hindering the performance
of latency-sensitive workloads. In turn, this has prompted the
creation of DEFs with differing schedulers for Reinforcement
learning [2], Machine Learning (Deep Learning) [3], [4], and
real-time stream processing Workloads [5]–[7]. However, each
of these DEFs has become highly specialised to a particular
workload type, for example Ray focuses on being able to effi-
ciently schedule Reinforcement learning workloads [2]. Other
DEF schedulers have been developed to improve scalability
[8]–[11], while limiting the scheduling policy to a single
metric and losing guarantees for data-locality, significantly
hindering the performance of data-intensive operations. Hybrid
DEFs attempted to benefit from two scheduling architectures
providing efficient scheduling for a larger set of workloads
[11], at the cost of being unable to exploit the full performance
of a single architecture.

Previous approaches to adapting the schedulers of DEFs
have been limited by their need for user intervention: policy
adaptation requires user-provided completion time goals for
incoming workloads [12]; architecture adaptation [13] requires
user creation of a model for adapting a known workload; and
learning based approaches to date have been limited to learning
a single scheduling policy for a specific architecture [14]. Our
research explores a new approach to scheduling within DEFs,
an Emergent Scheduler, capable of autonomously selecting
and composing the ideal architecture and policy for a given

workload at runtime, drawing on a large pool of potential
building blocks.

• Can we use behavioural composition (instead of policy
adaptation) to form different optimal schedulers for dif-
ferent workloads / environments?

• Can we learn the optimal composition at runtime? How
much performance gain do we get vs a fixed architecture?

We present initial results which demonstrate the perfor-
mance of different scheduling strategies when being sub-
jected to workloads of varying granularity, indicating different
scheduling policies are better suited to different workloads.
The results represent an interesting runtime search space for
learning the ideal composition for a given workload. However,
the learning process in this domain is uniquely challenging
in that workloads can be highly divergent with few shared
characteristics, are often non-repeating, and their arrival can
be sporadic. This is a key area of future work, in addition
to considering storage locations of data and more diverse
scheduling architectures.



REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[2] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. I. Jordan et al., “Ray: A distributed
framework for emerging {AI} applications,” in 13th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 18),
2018, pp. 561–577.

[3] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” ArXiv, vol. abs/1802.05799, 2018.

[4] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman,
D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin,
R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar,
“Mllib: Machine learning in apache spark,” J. Mach. Learn. Res.,
vol. 17, no. 1, pp. 1235–1241, Jan. 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2946645.2946679

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

[6] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia, “Structured streaming: A declarative api for
real-time applications in apache spark,” in Proceedings of the 2018
International Conference on Management of Data, ser. SIGMOD ’18.
New York, NY, USA: ACM, 2018, pp. 601–613. [Online]. Available:
http://doi.acm.org/10.1145/3183713.3190664

[7] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat,
S. Mittal, and D. Ryaboy, “Storm@twitter,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 147–156.
[Online]. Available: http://doi.acm.org/10.1145/2588555.2595641

[8] I. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson, and S. Hand, “Firma-
ment: Fast, centralized cluster scheduling at scale,” in 12th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
16), 2016, pp. 99–115.

[9] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: scalable and coordinated scheduling for
cloud-scale computing,” in Proceedings of the 11th USENIX conference
on Operating Systems Design and Implementation. Berkeley, CA,
USA: USENIX Association, 2014, pp. 285–300. [Online]. Available:
https://dl.acm.org/citation.cfm?id=2685071

[10] K. Ousterhout, P. Wendell, and M. Zaharia, “Sparrow:
Distributed, Low Latency Scheduling.” [Online]. Available:
http://dx.doi.org/10.1145/2517349.2522716

[11] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel,
“Hawk: Hybrid Datacenter Scheduling,” in 2015 {USENIX}
Annual Technical Conference ({USENIX} {ATC} 15). Santa
Clara, CA: USENIX Association, 2015, pp. 499–510.
[Online]. Available: https://www.usenix.org/conference/atc15/technical-
session/presentation/delgado

[12] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
J. Torres, and E. Ayguadé, “Resource-aware adaptive scheduling for
mapreduce clusters,” in Middleware 2011, F. Kon and A.-M. Kermarrec,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 187–
207.

[13] Y. Xia, R. Ren, H. Cai, A. V. Vasilakos, and Z. Lv, “Daphne: A
flexible and hybrid scheduling framework in multi-tenant clusters,” IEEE
Transactions on Network and Service Management, vol. 15, no. 1, pp.
330–343, March 2018.

[14] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
2018.


