Towards Emergent Scheduling for Distributed
Execution Frameworks

Paul Allan Dean and Barry Porter
School of computing & communications
Lancaster University
Lancaster, UK
(p.deanl, b.f.porter) @lancaster.ac.uk

I. ABSTRACT

The increased volume of data available to organisations, the
computational resources available within data centres, and the
demand for systems capable of processing Terabytes/Petabytes
of data has influenced the development of numerous Dis-
tributed Execution Frameworks (DEFs), such as Apache Spark
and Ray [1], [2].

DEFs have become a ubiquitous part of modern data pro-
cessing systems, both as standalone processing frameworks
and in a pipeline for a larger service, for example, feature
extraction within a recommender system processing large
volumes of data.

The wide range of workload types for DEFs make it
extremely challenging to build a scheduler able to maximise
throughput for all cases, causing scheduling overheads for
certain workload types, for example, Apache Spark adds
latency to all scheduling decisions hindering the performance
of latency-sensitive workloads. In turn, this has prompted the
creation of DEFs with differing schedulers for Reinforcement
learning [2], Machine Learning (Deep Learning) [3], [4], and
real-time stream processing Workloads [5]-[7]. However, each
of these DEFs has become highly specialised to a particular
workload type, for example Ray focuses on being able to effi-
ciently schedule Reinforcement learning workloads [2]. Other
DEF schedulers have been developed to improve scalability
[8]-[11], while limiting the scheduling policy to a single
metric and losing guarantees for data-locality, significantly
hindering the performance of data-intensive operations. Hybrid
DEFs attempted to benefit from two scheduling architectures
providing efficient scheduling for a larger set of workloads
[11], at the cost of being unable to exploit the full performance
of a single architecture.

Previous approaches to adapting the schedulers of DEFs
have been limited by their need for user intervention: policy
adaptation requires user-provided completion time goals for
incoming workloads [12]; architecture adaptation [13] requires
user creation of a model for adapting a known workload; and
learning based approaches to date have been limited to learning
a single scheduling policy for a specific architecture [14]. Our
research explores a new approach to scheduling within DEFs,
an Emergent Scheduler, capable of autonomously selecting
and composing the ideal architecture and policy for a given

workload at runtime, drawing on a large pool of potential
building blocks.

o Can we use behavioural composition (instead of policy
adaptation) to form different optimal schedulers for dif-
ferent workloads / environments?

o Can we learn the optimal composition at runtime? How
much performance gain do we get vs a fixed architecture?

We present initial results which demonstrate the perfor-

mance of different scheduling strategies when being sub-
jected to workloads of varying granularity, indicating different
scheduling policies are better suited to different workloads.
The results represent an interesting runtime search space for
learning the ideal composition for a given workload. However,
the learning process in this domain is uniquely challenging
in that workloads can be highly divergent with few shared
characteristics, are often non-repeating, and their arrival can
be sporadic. This is a key area of future work, in addition
to considering storage locations of data and more diverse
scheduling architectures.

[1]

[2

—

[3]
[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

REFERENCES

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Paul, M. L. Jordan et al., “Ray: A distributed
framework for emerging {Al} applications,” in /3th {USENIX} Sympo-
sium on Operating Systems Design and Implementation ({OSDI} 18),
2018, pp. 561-577.

A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” ArXiv, vol. abs/1802.05799, 2018.

X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman,
D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin,
R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar,
“Mllib: Machine learning in apache spark,” J. Mach. Learn. Res.,
vol. 17, no. 1, pp. 1235-1241, Jan. 2016. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2946645.2946679

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee
on Data Engineering, vol. 36, no. 4, 2015.

M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi,
I. Stoica, and M. Zaharia, “Structured streaming: A declarative api for
real-time applications in apache spark,” in Proceedings of the 2018
International Conference on Management of Data, ser. SIGMOD ’18.
New York, NY, USA: ACM, 2018, pp. 601-613. [Online]. Available:
http://doi.acm.org/10.1145/3183713.3190664

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat,
S. Mittal, and D. Ryaboy, “Storm@twitter,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 147-156.
[Online]. Available: http://doi.acm.org/10.1145/2588555.2595641

1. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson, and S. Hand, “Firma-
ment: Fast, centralized cluster scheduling at scale,” in 72th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI}
16), 2016, pp. 99-115.

E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: scalable and coordinated scheduling for
cloud-scale computing,” in Proceedings of the 11th USENIX conference
on Operating Systems Design and Implementation. Berkeley, CA,
USA: USENIX Association, 2014, pp. 285-300. [Online]. Available:
https://dl.acm.org/citation.cfm?id=2685071

K. Ousterhout, P. Wendell, and M. Zaharia, “Sparrow:
Distributed, Low Latency Scheduling.” [Online]. Available:
http://dx.doi.org/10.1145/2517349.2522716

P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel,
“Hawk: Hybrid Datacenter Scheduling,” in 2015 {USENIX}
Annual Technical Conference ({USENIX} {ATC} 15). Santa
Clara, CA: USENIX Association, 2015, pp. 499-510.
[Online]. Available: https://www.usenix.org/conference/atc15/technical-
session/presentation/delgado

J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
J. Torres, and E. Ayguadé, “Resource-aware adaptive scheduling for
mapreduce clusters,” in Middleware 2011, F. Kon and A.-M. Kermarrec,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 187-
207.

Y. Xia, R. Ren, H. Cai, A. V. Vasilakos, and Z. Lv, “Daphne: A
flexible and hybrid scheduling framework in multi-tenant clusters,” IEEE
Transactions on Network and Service Management, vol. 15, no. 1, pp.
330-343, March 2018.

H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Al-
izadeh, “Learning scheduling algorithms for data processing clusters,”
2018.

