
Coordinating Stable Crash Tolerance for
Stream Processing Systems

George Stamatiadis
Paul Ezhilchelvan

Newcastle University

February 2019



Crash-tolerance provisioning in stream processing systems commonly re-
quires operator nodes to store recovery related information, such as check-
points and upstream backup, and use that information to aid the recovery of
neighbouring operator nodes. This requirement inevitably injects a trade-off
between storage overheads and checkpointing interruptions during normal,
crash-free operations: the more often the checkpoints are taken and publi-
cised, the smaller will be the storage overhead for upstream backup and the
swifter will be crash recovery; frequent checkpointing and subsequent indi-
cations to upstream operators, however, slows down the normal operation.

Furthermore, current approaches do not adequately address the issues
that arise when an operator processes multiple input streams from upstream
operators. The outputs produced and passed on downstream by such an
operator depends not just on upstream inputs but also on how these in-
puts interleaved at that operator while being processed. When that operator
crashes and recovers, it must maintain the same interleaving order in reach-
ing the pre-crash state from the check-pointed state; otherwise, post-crash
outputs can be different to their pre-crash counterparts and downstream op-
erators, though not crashed, need to rollback for recovery to be consistent.
This leads to a domino effect in the downstream end. Worse still, the end
user will have to accept new outputs that are different from the ones re-
ceived prior to crash. One of the aims of this investigation is to ensure that
an operator’s outputs to a downstream neighbour or to the end user be stable
despite crash recovery: an output, once delivered, may be re-issued but are
never substituted for a different one. In addition, we will seek to minimise
crash-recovery related storage and processing overheads on operator nodes.
Meeting these aims requires taking a novel approach that is fundamentally
different to the existing ones.

We will present a crash-tolerant architecture wherein the operator nodes
continually flush-out recovery information they accrue, as message piggy-
backs to a reliable house-keeper system, whenever they output to a down-
stream entity. House-Keeper then coordinates crash-recovery using the re-
covery information it holds for the entire system. This leads to negligible
storage and processing overhead on operator nodes, stable output delivery
and to provably-minimal recovery latencies. For example, in the absence of
multiple crashes, a crashed node needs to re-start only from its latest check-
point and, during recovery, no operative node needs to roll-back and outputs
are always guaranteed to be stable.

1


