Accelerating Python on Heterogeneous Architectures using Staged
Parallelisation

Dejice Jacob, Jeremy Singer, and Phil Trinder

School of Computing Science, University of Glasgow

08,/02/2019

Abstract

GPU accelerators are now commodity items, targeted by domain-specific languages, dialects of exist-
ing C-like languages like CUDA and OpenCL or their bindings in other languages. End-user programming
is now commonplace, as non-expert developers employ dynamic scripting languages like Python to de-
velop custom applications and workflows. This research project harnesses the synergy between these two
popular trends, to create a parallelising framework for Python code. Rather than requiring end-user pro-
grammers to learn how to develop CUDA kernels, we use an intelligent analysis framework to synthesise
accelerator code from undecorated Plain Old Python scripts. This allows everyday coders to gain direct
benefit from compute accelerators.

We follow classical parallelisation techniques, identifying data dependences in loop nest structures
using classical dependence analysis and vectorisation algorithms for known data types. However our
approach is unlike traditional auto-parallelising compilation approaches, e.g. for Fortran, since Python
presents unique challenges and opportunities.

Interpreted languages with dynamic typing allow us to partially check for dependences ahead of time,
but to confirm that code can be parallelised, we need to wait till execution time to resolve concrete
types. By partially deferring analysis to runtime, we can take advantage of the knowledge of loop-
invariant constants or "unknown at compile-time” loop-limits to unearth parallelisation optimisation
opportunities. At runtime, we specifically look for loop-dependence calculations that were deferred
to runtime, calculate the dependences by plugging-in the run-time values and if required rebuild the
dependence graph for vectorisation. This "mixed static and dynamic” analysis and compilation could
potentially change the structure of the dependence graph and hence unlock greater parallelisation of the
loop.

This is a staged approach to auto-parallelisation, relying heavily on the introspective capabilities of
the Python runtime. We anticipate using a light-weight cost model that is dependent on the physical
characteristics of the accelerator to calculate the cost/benefit tradeoff for inspecting, analysing and
optimising code for a target accelerator like a GPU. We aim to use compilation techniques to generate
kernels for nested Python loops at run-time, specialised for the loop dependences and types of data.

We parallelise numerical kernel code that is computed within nested loop-nests. To achieve the depen-
dence analysis and to check for parallelisation opportunities, we restrict ourselves to multi-dimensional
homogeneous arrays of basic types like floats, int32 etc. Type inspection at runtime on the bindings will
indicate whether the code can be compiled or has to fall back to the interpreter for execution.

To compile the auto-generated kernels targeting the GPU, we use Numba, an LLVM based compiler
for Python. Numba enables the compilation of specific kernels by the use of Python decorators. This
allows us to target specific kernels of code we can potentially accelerate and jit for execution. We aim to
make execution transparent to the user by replacing all applicable loop-nests in the kernel with closures
that have access to the relevant data-structures from the static compilation stage and returning a module
to the user that redirects to the dynamic code analysis and generation framework.

In this talk, we report on current progress in extending the Python runtime to support heterogeneous
targets, demonstrate potential use case scenarios and provide some preliminary results.



