Chainspace:
A Sharded Smart Contract Platform

Authors

Mustafa Al-Bassam*
Alberto Sonnino*
Shehar Bano*

Dave Hrycyszyn**
George Danezis*

Y CHAINSPACE

* University College London
** constructiveproof.com

NDSS Symposium 2018

The authors

Dave Hrycyszyn George Danezis

People love blockchains

J Fancy JLook complicated

J Involve money JAbout security stuff

b,
s 3
O:
=
9E.
[25]
L o
i ¢

What can we do with that?

or...

dwdk%.me

When blockchains meet cats...

When blockchains meet cats...

Crypto-kitties

When blockchains meet kittens...

gl
- =5
’V
o -
' - o ot
~ Ty
P
'
-

Why did that happen?

m Blockchains do not scale!

No matter how many computer we add, we will not be able
to process more transactions per seconds.

Introduction

m What is chainspace?

" contribution |)
Scalable smart contract platform |=—_1_ /I
4\/|
N /
/" contribution I I
Supporting privacy E EI
<=

10

Introduction

m What is chainspace?

/contribution | N\

Scalable smart contract platform |=—_1_
“/l

Not for today

11

-

_

3.
Privacy by Design

~

J

contents
1. /
System Overview
()
2.
Scalability
\ J
4
5.
Performance

Security Properties

~

4

J

12

System Overview

= How Chainspace works? ‘
= Nodes are organised into shards ° @

= Shards manage objects objects
m Objects can be used only once
Shard objects |status Shard objects | status
W o1 Jectve| | o1 | active
r 02 (02
node| |node| [node| |7TTTTTTTTTTTTTT node| |node| |[node| [T
node| |node node node

13

System Overview

= How Chainspace works? ‘
= Nodes are organised into shards ° @
= Shards manage objects objects
m Objects can be used only once

status Shard objects [status]

active o1 active
(02 =
""""""" node node| |node T

objects

node node

14

System Overview

= How Chainspace works?
= A cruel vision of it:

S

Feed kitties

old object new object
(dead) (born)

15

Scalability

s How nodes reach consensus?
The S-BAC Protocol

Byzantine /7, \ Atomic

Agreement .~/ Commit

16

Scalability

s How nodes reach consensus?
The S-BAC Protocol

Byzantine /7, \ Atomic

Agreement \ "/ Commit

user \l

Shard 1 =e
(manage 01) \
Shard 2 ®
(manage 02)

Shard 3

(manage 03)

17

Scalability

s How nodes reach consensus?
The S-BAC Protocol

Byzantine /, \ Atomic

Agreement \ "/ Commit

lock
user X ;
Shard 1 \ e BFT
(manage 01) \
Shard 2 ® BFT
(manage 02)
Shard 3

(manage 03)

18

Scalability

s How nodes reach consensus?
The S-BAC Protocol

Byzantine /. Atomic

Agreement N\ "/ Commit

lock unlock
user X ; ;
Shard 1 \ o BFT « ® BFT ——
(manage 01) \ ><
Shard 2 . BFT v ‘e BFT ——
(manage 02)
Shard 3

(manage 03)

19

Scalability

s How nodes reach consensus?
The S-BAC Protocol

Byzantine /. Atomic

Agreement N\ "/ Commit

lock unlock
| |

user \ * * /‘
Shard 1 ‘e BFT 'Y . BFT —
N D G

(manage 02) \
Shard 3 * BFT

(manage 03)

20

Scalability

= The wisdom behind S-BAC

4 N)
Only shards managing ol and 02 Shard 1 and shard 2 can work in
are reaching consensus parallel

N 2N J

user \l /ﬁ
Shard 1 ‘e BFT 'Y . BFT —
N D G

(manage 02) \
Shard 3 e BFT

(manage 03)

21

Security Properties

= What does Chainspace guarantee?
m Honest Shard: among 3f+1 nodes, at most f are malicious.
= Malicious Shard: over f dishonest nodes.
= Chainspace properties:

22

Security Properties

= What does Chainspace guarantee?
m Honest Shard: among 3f+1 nodes, at most f are malicious.
= Malicious Shard: over f dishonest nodes.
= Chainspace properties:

4 Transparency)

Anyone can authenticate the history of
transactions and objects that led to the
creation of an object.

/

23

Security Properties

= What does Chainspace guarantee?
m Honest Shard: among 3f+1 nodes, at most f are malicious.
= Malicious Shard: over f dishonest nodes.
= Chainspace properties:

4 Transparency N Encapsulation)
Anyone can authenticate the history of A smart contract cannot interfere with
transactions and objects that led to the objects created by another contract
creation of an object. y (except if defined by that contract).

24

Security Properties

= What does Chainspace guarantee?
m Honest Shard: among 3f+1 nodes, at most f are malicious.
= Malicious Shard: over f dishonest nodes.

= Chainspace properties:

4)

Anyone can authenticate the history of
transactions and objects that led to the

Transparency

creation of an object.
/

~

4 Integrity

(Honest Shard)
Only valid & non-conflicting transactions

-

A smart contract cannot interfere with
objects created by another contract

Encapsulation

will be executed.
J

-

(except if defined by that contract).

~

25

Security Properties

= What does Chainspace guarantee?
m Honest Shard: among 3f+1 nodes, at most f are malicious.
= Malicious Shard: over f dishonest nodes.
= Chainspace properties:

4 Transparency N Encapsulation)
Anyone can authenticate the history of A smart contract cannot interfere with
transactions and objects that led to the objects created by another contract
creation of an object. y (except if defined by that contract).

4 Integrity N Non-Repudiation)

Honest Shard)))
() Misbehaviour is detectable: there are

O'nly valid & non-conflicting transactions evidences of misbehaviour pointing to
will be executed. the faulty parties or shards.
N NG /

26

Performance

= What did we implement?

27

Performance

= What did we implement?

/I\/Ieasured and tested\
on Amazon AWS

dWs$s

28

Performance

= What did we implement?

/ S-BAC protocol \

implemented in Java

/I\/Ieasured and tested\
on Amazon AWS

dWs$s

Based on
BFT-SMaRt

_ /

29

Performance

= What did we implement?

/ S-BAC protocol \

implemented in Java

/I\/Ieasured and tested\
on Amazon AWS

adWsS
NS /
/ Python contract \

simulator

Based on
BFT-SMaRt

_ /

Helps developers
Simulation of the checker
No need for full deployment

_ /

30

Performance

= What did we implement?

/ S-BAC protocol \

implemented in Java

/I\/Ieasured and tested\
on Amazon AWS

adWsS
NS /
/ Python contract \

simulator

Based on
BFT-SMaRt

_ /

Everything is released as open source software

https://github. conml chai nspace
Helps developers

Simulation of the checker
No need for full deployment

31

Performance

s How the number of shards influences the TPS?

400 +—TPS vs Number of Shards

350 A

300 A

250 A

200 A

150 A

Average transactions / second

100 A

—— 1 input
50 4 2 inputs

2 4 6 8 10 12 14
Number of shards

TPS scales linearly with the number of shards 32

Performance

s How does the size of the shard influence the TPS?

100 - TPS vs Nodes per Shard

90 A
80 A
70 A

60 -

50 A

Average transactions / second

40 A

30 A

10 20 30 40
Number of nodes per shard

TPS decreases slowly 33

Performance

= How the number of inputs influence the TPS?

1897 TPS vs Number of Inputs

160 -

=
D
o

=
N
o

=
o
o

[e0)
o

Average transactions / second

()]
o

40 A T T T T T
2 4 6 8 10
Number of inputs per transaction

TPS decreases slowly and then flattens out 34

Performance

= How is the trade off between TPS and latency?

1.0 - _
0.8 -
> 0.6
= —o— 20t/s
3 40 t/s
o —— 60 t/s
T 0.4
—<¢— 80 t/s
—— 100 t/s
—e— 120t/s
0.29— 140 t/s
—o— 160 t/s
/ Probability vs Latency 180 t/s
0.0 ¥ 200 t/s
0 500 1000 1500 2000 2500

Client-perceived latency (ms)

Low latency even when the system is heavy loaded 35

What else is in the paper?

Cross shard transactions

Smart metering contract

Platform for decision
making

contracts benchmarking
and evaluation

Chainspace: A Sharded Smart Contracts Platform

Mustafa Al-Bas

m*, Alberto Sonnino*, Shehar Bano*, Dave Hrycyszyn' and George Danezi

* University College London, United Kingdom
T constructiveproof.com

Abstract—Chainspace is a decentralized
ributed ledger, that supports deinea smart contracts
and execut

all. The system is scalable, by sharding state and the exccution
tributed commit protocol,

sten s secure agal ets of
modes rying to compromis it integity or avallabilty pmpenlei
through Byzantine Fault Tolerance (BFT), high-
auditability, non-repudiation and ockeh
when BFT fails, auditing mechanisms are in place to trace mali-
cious participants. We present the design, rationale, and details
of Chainspace; we argue through evaluating an implementation
of the system about its scaling and other features; we illustrate a
number of iendly smart contracts for smart metering,
polling and banking and measure their performance.

acy-fri

1. INTRODUCTION

Chainspace is a distributed ledger platform for high-integrity
and transparent processing of transactions within a decentral-
ized system. Unlike application specific distributed ledgers,
such as Bitcoin [Nak08] for a currency, or certificate trans-
parency [LLK13] for certificate verification, Chainspace offers
extensibility though smart contracts, like Ethereum [Woold].
However, users expose to Chainspace enough information
about contracts and transaction semantics, to provide higher
scalability through sharding across infrastructure nodes: our
modest testbed of 60 cores achieves 350 transactions per
second, as compared with a peak rate of less than 7 trans-
actions per second for Bitcoin over 6K full nodes. Etherium
currently processes 4 transactions per second, out of theoretical
maximum of 25. Furthermore, our platform is agnostic as to
the smart contract language, or identity infrastructure, and
supports privacy features through modern zero-knowledge
techniques [BCCG16, DGFK14

Unlike other scalable but ‘permissioned’ smart con-
tract platforms, such as Hyperledger Fabric [Cacl6]

BigchainDB [MMM* 16], Chainspace aims to be an ‘open’
system: it allows anyone to author a smart contract, anyone to
provide infrastructure on which smart contract code and state
runs, and any user o access calls to smart contracts. Further,
it provides ecosystem features, by allowing composition of
smart contracts from different authors. We integrate a value

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior writien consent of the Internet Society, the first-named author
(for reproduction of an entire paper only). and the author's employer if the
paper was prepared within the scope of employment.

tem, named CSCoin, as a system smart contract to allow
or accounting between those parties.

However, the security model of Chainspace, is different
from traditional unpermissioned blockchains, that rely on proof-
of-work and global replication of state, such as Ethereum. In
Chainspace smart contract authors designate the parts of the
infrastructure that are trusted to maintain the integrity of their
—and only depend on their correctness, as well as the
correctness of contract sub-calls. This provides fine grained
control of which part of the infrastructure need to be trusted on
4 per-contract basis, and also allows for horizontal scalability.

‘This paper makes the following contributions:

It presents Chainspace, a sysiem that can scale arbitrar-
ily as the number of nodes increase, tolerates byzantine
failures, and can be fully and publicly audited

It presents a novel distributed atomic commit protocol,
called S-BAC, for sharding generic smart contract
transactions across multiple byzantine nodes, and
correctly coordinating those nodes to ensure safety,
liveness and security properties.

It introduces a distinction between parts of the smart
contract that execute a computation, and those that
check the computation and discusses how that di
tinction is key to supporting privacy-friendly smart-
contracts.

It provides a full implementation and evaluates the per-
formance of the byzantine distributed commit protocol,
S-BAC, on a real distributed set of nodes and under
varying transaction loads.

o It presents a number of key system and applica-

tion smart contracts and evaluates their performance
riendly smart-metering and
privacy.friendly. polls ilustrate and validate support
for high-integrity and high-privacy applications.

Outline: Section I presents an overview of Chainspace;
Section Il presents the client-facing application interf:
Section IV presents the design of internal data structures
‘guaranteeing integrity, the distributed architecture, the byzantine
commit protocols, and smart contract definition and composi-
tion. Section V' argues the correctness and security; specific
smart contracts and their evaluations are presented in Section VI;
Section VII presents an evaluation of the core protocols and
smart contract performance; Section VIII presents limitation
and Section IX a comparison with related work; and Section X
concludes.

ce;

36

Future Works

1. How to recover from malicious shards?

37

Future Works

1. How to recover from malicious shards?

2. How can a smart contract creator avoid
dishonest shards ?

38

Future Works

1. How to recover from malicious shards?

2. How can a smart contract creator avoid
dishonest shards ?

3. How to configure shards?

39

Future Works

1. How to recover from malicious shards?

2. How can a smart contract creator avoid
dishonest shards ?

3. How to configure shards?

4. How to incentivise nodes?

Y YS
N N N

40

Conclusions

s What did we talked about ?

Supporting privacy

" contribution | I
Scalable smart contract platform _—
Ta—
N J
/~ contribution Il I
L]
<=

41

Conclusions

m Main take-aways

4 N

sharding —.—’

scalability

In the paper

42

Thank you for your attention
Questions?

Alberto Sonnino
alberto.sonnino@ucl.ac.uk

https://sonnino.com
1 ’ https://github. com chai nspace
T Y THE ALAN
EPSRC decode TURING
e INSTITUTE

This work is supported in part by EPSRC Grant EP/M013286/1, the EU H2020 DECODE project (grant agreement number 732546), and The Alan Turing Institute.

