

Institute for Computing Systems Architecture

Opportunities and Challenges in Scaling Up Graph Analytics

Priyank Faldu and **Boris Grot** The University of Edinburgh

* This work is partially supported by Oracle Labs

Graphs are a natural way to represent pair-wise relationships among objects in the real world

- Each object is a vertex
- Relationship among a pair of objects represented with an edge

Graphs are a natural way to represent pair-wise relationships among objects in the real world

- Each object is a vertex
- Relationship among a pair of objects represented with an edge •

Example:

Facebook Social Network

Graphs are a natural way to represent pair-wise relationships among objects in the real world

- Each object is a vertex
- Relationship among a pair of objects represented with an edge

Example:

Facebook Social Network

Boris Grot

Priyank Faldu

Graphs are a natural way to represent pair-wise relationships among objects in the real world

- Each object is a vertex
- Relationship among a pair of objects represented with an edge

Example:

Graphs are a natural way to represent pair-wise relationships among objects in the real world

- Each object is a vertex
- Relationship among a pair of objects represented with an edge

Example:

Graph Analytics

Extracting meaningful information out of complex many-tomany relationships among entities in a graph

Extracting meaningful information out of complex many-tomany relationships among entities in a graph

Extracting meaningful information out of complex many-tomany relationships among entities in a graph

Extracting meaningful information out of complex many-tomany relationships among entities in a graph

Extracting meaningful information out of complex many-tomany relationships among entities in a graph

Extracting meaningful information out of complex many-tomany relationships among entities in a graph

Extracting meaningful information out of complex many-tomany relationships among entities in a graph

- Applications
 - Label Propagation
 - Centrality Analysis
 - Most influential people and information in social media
 - Community Analysis
 - Identify customers with similar interests
 - Connectivity Analysis
 - Find weakness in a network
 - Path Analysis
 - Route optimization for distribution and supply chain

THE UNIVERSITY of EDINBURGH

UK System Research Challenges Workshop March 22, 2018

Graphs are huge and growing ...

Institute for Computing Systems Architecture

Graphs are huge and growing ...

Graphs don't fit in main memory of a single server

Institute for Computing Systems Architecture

Scale-Out Graph Analytics

- Graph is partitioned across a number of nodes
 - Graph is stored in combined memory of all nodes → Enables inmemory processing

Scale-Out Graph Analytics

- Graph is partitioned across a number of nodes
 - Graph is stored in combined memory of all nodes → Enables inmemory processing

Scale-Out Graph Analytics

- Graph is partitioned across a number of nodes
 - Graph is stored in combined memory of all nodes → Enables inmemory processing

Scale-Out Graph Analytics Not Desirable

In-memory scale-out processing with 10s-100s nodes can be outperformed by disk-based scale-up graph processing [GraphChi OSDI'12]

Scale-Out Graph Analytics Not Desirable

In-memory scale-out processing with 10s-100s nodes can be outperformed by disk-based scale-up graph processing [GraphChi OSDI'12]

Reason for inefficiency of scale-out graph analytics:

- High inter-node communication & synchronization overhead
 - "Small World" property of graphs \rightarrow Difficult to partition

Scale-Out Graph Analytics Not Desirable

In-memory scale-out processing with 10s-100s nodes can be outperformed by disk-based scale-up graph processing [GraphChi OSDI'12]

Reason for inefficiency of scale-out graph analytics:

- High inter-node communication & synchronization overhead
 - "Small World" property of graphs → Difficult to partition

So, why not scale-up graph analytics?

Need large per-node memory capacity

- DRAM: a limiting factor in scaling up
 - Poor technology scaling
 - High cost for large capacity 😣

Need large per-node memory capacity

- DRAM: a limiting factor in scaling up
 - Poor technology scaling
 - High cost for large capacity 😣
- Alternative technology for main memory?

Institute for Computing Systems Architecture

Need large per-node memory capacity

- DRAM: a limiting factor in scaling up
 - Poor technology scaling
 - High cost for large capacity 😣
- Alternative technology for main memory?
 - Emerging solution: Storage Class Memory (SCM)
 - Terabytes of capacity at affordable price

Image Credit: https://marketrealist.com/2016/03/microns-3d-xpoint-launch-stands-now

Institute for Computing Systems Architecture

Need large per-node memory capacity

SCM: Enabler for scale-up graph analytics

- Alternative technology for main memory?
 - Emerging solution: Storage Class Memory (SCM)
 - Terabytes of capacity at affordable price

Image Credit: https://marketrealist.com/2016/03/microns-3d-xpoint-launch-stands-now

SCM: No Free Lunch

SCM: No Free Lunch

- 2x-4x slower access latency than DRAM imes
- 4x-8x lower bandwidth than DRAM 😔
- Multiple orders of magnitude lower write endurance than DRAM

SCM: No Free Lunch

- 4x-8x lower bandwidth than DRAM 😔
- Multiple orders of magnitude lower write endurance than DRAM

Implications for scale-up graph analytics

Institute for Computing Systems Architecture

CPI Stack of DRAM based Scale-Up Graph Analytics Cycles spent in DRAM vs Elsewhere

DRAM Elsewhere

CPI Stack of DRAM based Scale-Up Graph Analytics Cycles spent in DRAM vs Elsewhere

DRAM Elsewhere

CPI Stack of DRAM based Scale-Up Graph Analytics Cycles spent in DRAM vs Elsewhere

DRAM Elsewhere

SCM will exacerbate the problem

11

Mitigating Slower Latency of SCM

Data Prefetching for latency hiding Challenges:

THE UNIVERSITY of EDINBURGH

informatics

- Graphs exhibit random access patterns
- Simple hardware prefetchers are inadequate for graphs

Mitigating Slower Latency of SCM

Data Prefetching for latency hiding **Challenges:**

- Graphs exhibit random access patterns
- Simple hardware prefetchers are inadequate for graphs

Potential Solutions:

THE UNIVERSITY of EDINBURGH

Hardware

- Graph specific hardware prefetcher [Ainsworth et al. ICS'16] Software
- Employ software prefetcher in the framework
 - CPU often idle waiting on memory \rightarrow Plenty of idle cycles to burn on \bullet extra instructions

- Data transfer between DRAM & CPU happens at cacheline granularity
- Observation: Graphs exhibit poor spatial locality

- Data transfer between DRAM & CPU happens at cacheline granularity
- Observation: Graphs exhibit poor spatial locality

% of Evicted Cachelines in LLC

Bytes Accessed

- Data transfer between DRAM & CPU happens at cacheline granularity
- Observation: Graphs exhibit poor spatial locality

Bytes Accessed

Potential Solutions:

<u>Software</u>

■ Exploit graph topology to reorder vertices → Improved spatial locality

<u>Hardware</u>

 Revisit sectored caches → Only fetch the required words into on-chip caches

Mitigating Lower Write Endurance of SCM

New design goal: Reduce off-chip write traffic

Potential Solutions:

Software:

- Approaches to improve write locality in on-chip caches
 - E.g., pull-based vs push-based approach

<u>Hardware:</u>

- Aggressively retain cachelines that accumulate writes
 - Even at the expense of short temporal reuse of some cachelines

Conclusion

- Introduction of SCM will provide large capacity main memory at affordable price in commodity server
- SCM will enable in-memory scale-up graph analytics even for extremely large graphs
 - Open research questions on how to address weaknesses of SCM to achieve high performance for scale-up graph analytics

Conclusion

- Introduction of SCM will provide large capacity main memory at affordable price in commodity server
- SCM will enable in-memory scale-up graph analytics even for extremely large graphs
 - Open research questions on how to address weaknesses of SCM to achieve high performance for scale-up graph analytics

Thank You

Priyank Faldu

PhD Student The University of Edinburgh <u>www.faldupriyank.com</u>

Boris Grot

Lecturer The University of Edinburgh <u>http://homepages.inf.ed.ac.uk/bgrot</u>

